Biomembranes pp 291-316 | Cite as

Calcium Transport in Synaptosomes and Synaptic Plasma Membrane Vesicles

  • A. P. Carvalho
  • O. P. Coutinho
  • V. M. C. Madeira
  • C. A. M. Carvalho
Part of the NATO ASI Series book series (NSSA, volume 76)


The entry of Ca2+ into nerve terminals through Ca2+ channels, and their interaction with some organic Ca2+ blockers, was briefly reviewed in the preceeding chapter. Membrane depolarization normally activates the Ca2+ channels 1–3, which causes an influx of Ca2+ across the membrane and a consequent rise in cytoplasmic [Ca2+]i which triggers a temporary release of neurotransmitters 4–7 and the activation of a series of reactions within the nerve cell 8–10. The rise in the intracellular Ca2+ is transient and, therefore, Ca2+ which enters during activity has to be pumped out.


Membrane Potential Nerve Terminal Membrane Vesicle Exchange Mechanism Membrane Depolarization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. F. Baker, Transport and metabolism of calcium ions in nerve, Progr. Biophys. Mol. Biol. 24: 177 (1972).CrossRefGoogle Scholar
  2. 2.
    R. Llinas, I. Z. Steinberg and K. Walton, Presynaptic calcium currents and their relation to synaptic transmission: voltage clamp study in squid giant synapse and theoretical model for the calcium gate, Proc. Nati. Acad. Sci. USA 73: 2918 (1976).CrossRefGoogle Scholar
  3. 3.
    S. Hagiwara and L. Byerly, Calcium channel, Ann. Rev. Neurosci. 4: 69 (1981).Google Scholar
  4. 4.
    B. Katz and R. Miledi, Ionic requirement of synaptic transmitter release, Nature 215: 651 (1967).PubMedCrossRefGoogle Scholar
  5. 5.
    B. Katz and R. Miledi, The role of calcium in neuromuscular facilitation, J. Physiol. 195: 481 (1968).PubMedGoogle Scholar
  6. 6.
    S. D. Erulkar and A. Fine, Calcium in the nervous tissue, Rev. Neurosci. 4: 179 (1979).Google Scholar
  7. 7.
    R. Rahamimoff, A. Lew-Tov and H. Meiri, Primary and secondary regulation of quantal transmiter release calcium and sodium, J. Exp. Biol. 89: 5 (1980).PubMedGoogle Scholar
  8. 8.
    A. P. Carvalho, Calcium in the nerve cell, in: “Handbook of Neurochemistry”, A. Lajtha, ed., Plenum Press, New York (1982).Google Scholar
  9. 9.
    M. A, Brostrom, C. O. Brostrom, B. McL. Breckenridge and D. J. Wolf, Calcium-dependent regulation of adenylate cyclase, Adv. Cyclic Nucleotide Res. 9: 85 (1978).PubMedGoogle Scholar
  10. 10.
    W. Y. Cheung, Calmodulin plays a pivotal role in cell regulation, Science 207: 19 (1980).PubMedCrossRefGoogle Scholar
  11. 11.
    A. Fleckenstein, Specific pharmacology of calcium in myocardium, cardiac pacemakers, and vascular smooth muscle, Ann. Rev. Pharmacol.Toxicol. 17: 149 (1977).CrossRefGoogle Scholar
  12. 12.
    L. Resenberger and D. J. Triggle, Calcium, calcium translocation and specific calcium antagonists, in “Calcium in Drug Action”, (1978).Google Scholar
  13. 13.
    H. Glossmann, D. R. Ferry, F. Lubbecke, R. Mews and F. Hofmann, Calcium channels: direct identification with radioligand binding studies, Trends Pharmacol. Sci. 3: 431 (1982).Google Scholar
  14. 14.
    M. P. Blaustein, The interrelationship between sodium and calcium fluxes across cell membranes, Rev. Physiol. Biochem. Pharmacol. 70: 32 (1974).Google Scholar
  15. 15.
    M. P. Blaustein and C. J. Oborn, The influence of sodium on calcium fluxes in pinched-off nerve terminals in vitro, J. Physiol. (Lond.) 247: 657 (1975).Google Scholar
  16. 16.
    M. P. Blaustein and A. C. Ector, Carrier-mediated sodium-dependent and calcium-dependent calcium efflux from prinched-off pre-synaptic nerve terminals (Synaptosomes) in vitro, Biochim. Biophys. Acta 419: 295 (1976).Google Scholar
  17. 17.
    R. DiPolo, and L. Beange, Mechanisms of calcium transport in the giant axon of the squid and theirs physiological role, Cell Calcium 1: 147 (1980).CrossRefGoogle Scholar
  18. 18.
    M. P. Blaustein and M. T. Nelson, Sodium-calcium exchange: its role in the regulation of cell calcium, in “Membrane Transport of Calcium”. E. Carafoli, ed.,Academic Press, New York (1982).Google Scholar
  19. 19.
    R. DiPolo and L. Beangé, Physiological role of ATP-driven calcium pump in squid axon. Nature 278: 271 (1979).PubMedCrossRefGoogle Scholar
  20. O. P. Coutinho, A. P. Carvalho and C. A. M. Carvalho, Effect of monovalent cations on Na+/Ca2+ exchange and ATP-dependent Ca2+ transport in synaptic plasma membranes. J. Neurochem. (In press).Google Scholar
  21. 21.
    D. L. Gill, E. F. Grollman and L. D. Kohn, Calcium transport mechanisms in membrane vesicles from guinea pig brain synaptosomes, J. Biol. Chem. 256: 184 (1981).PubMedGoogle Scholar
  22. 22.
    P. V. Sulakle and P. J. St. Louis, Passive and active calcium fluxes across plasma membranes, Prog. Biophys. Molec. Biol. 35: 135 (1980).Google Scholar
  23. 23.
    F. J. Brinley, Jr., Regulation of intracellular calcium in squid axons, Fed. Proc. 39: 2778 (1980).Google Scholar
  24. 24.
    M. P. Blaustein, R. W. Ratzalaff and E. S. Schweitzer, Control of intracellular calcium in presynaptic nerve terminals, Fed. Proc. 39: 2790 (1980).Google Scholar
  25. 25.
    M. P. Blaustein, R. W. Ratzlaff and E. S. Schweitzer, Calcium buffering in presynaptic nerve terminals. II. Kinetic pro- perties of the nonmitochondrial Ca sequestration mechanism, J. Gen. Physiol. 72: 43 (1978).PubMedCrossRefGoogle Scholar
  26. 26.
    R. DiPolo, J. Requena, R. J. Brinley, Jr. L. J. Mullins, A. Scarpa and T. Tiffert, Ionized calcium concentrations in squid axons, J. Gen. Physiol. 67: 433–467 (1976).PubMedCrossRefGoogle Scholar
  27. 27.
    H. Rahaminoff and R. Spanier, Sodium-depent calcium uptake in membrane vesicles derived from rat brain synaptosomes, FEBS Lett. 104: 111 (1979).CrossRefGoogle Scholar
  28. 28.
    M. L. Michaelis and E. K. Michaelis, Ca2+ fluxes in resealed synaptic plasma membrane vesicles. Life Sci. 28: 37 (1981).PubMedCrossRefGoogle Scholar
  29. 29.
    G. D. Schellenberg and P. D. Swanson, Sodium-dependent and calcium transport by rat brain microsomes, Biochem. Biophys. Acta 648: 13 (1981).Google Scholar
  30. O. P. Coutinho, C. A. M. Carvalho and A. P. Carvalho, Calcium uptake related to K+-depolarization and Na+/Ca2+ exchange in sheep brain synaptosomes. Brain Res. (In press).Google Scholar
  31. 31.
    D. M. Michaelson, S. Avissar, I. ophir, I. Pinchasi, I. Angel, Y. Kloog and M. Sokolovsky, On the regulation of acetylcholine release: a study utilizing Porpedo synaptosomes and synaptic vesicles, J. Physiol. (Paris) 76: 505 (1980).Google Scholar
  32. 32.
    F. J. Brinley, T. J. Tiffert and A. Scarpa, Mitochondria and other Ca2+ buffers of squid axons studied in situ, J. Gen. Physiol. 72: 101 (1978).PubMedCrossRefGoogle Scholar
  33. 33.
    J. Requena, Transport and regulation of calcium in nerve fibers, in “The Role of Calcium in Biological, L. J. Anghileri and A. M. T. Anghileri, eds., CRC Press, Inc., Boca Raton, Florida (1982).Google Scholar
  34. 34.
    K. E. O. Akerman and D. Nichols, Intrasynaptosomal compartmentation of calcium during depolarization-induced calcium uptake across the plasma membrane, Biochim. Biophys Acta 645: 41 (1981).CrossRefGoogle Scholar
  35. 35.
    I. D. Scott, K. E. 0. Akerman and D. G. Nicholls, Calcium-ion transport by intact synaptosomes, Biochem. J. 192: 873 (1980).PubMedGoogle Scholar
  36. 36.
    M. P. Blaustein, Effects of potassium, veratridine and scorpion venom on calcium accumulation and transmitter release by nerve terminals in vitro, J. Physiol. (Lond.) 247: 617 (1975).Google Scholar
  37. D. A. Nachshen and M. P. Blaustein, Some properties of potassium-stimulated calcium influx in presynaptic nerve endings, J. Gen. Physiol. 76: 709 (19b0).Google Scholar
  38. 38.
    C. A. M. Carvalho and A. P. Carvalho, Effect of temperature and ionophores on the permeability of synaptosomes, J. Neurochem. 33: 309 (1979).PubMedCrossRefGoogle Scholar
  39. 39.
    C. A. M. Carvalho, Fluxes of Ca2+, Sr2+ and Mgt+ in synaptosomes, Life Sci. 25: 73 (1979).PubMedCrossRefGoogle Scholar
  40. 40.
    D. A. Nachsen and M. P. Blaustein, The effects of some organic “Calcium antagonists” on calcium influx in presynaptic nerve terminals, Mol. Pharmacol. 16: 579 (1979).Google Scholar
  41. E. O. Akerman and D. G. Nicnolls, Cat+ transport by intact synaptosomaes: the voltage-dependent Ca2+ channel and a re-evaluation of the role of sodium/calcium exchange, Eur. J. Biochem. 117: 491 (1981).PubMedCrossRefGoogle Scholar
  42. I. Kamo, M. Muratsugn, R. Hongoh and Y. Kobatake, Membrane potential of mitochondria measured with an electrode sensitive to tetraphenyl phosphonium and relationship between proton electrochemical potential and phosphorylation potential in steady state, J. Membrane Biol. 49: 105 (1979).CrossRefGoogle Scholar
  43. 43.
    K. N. D. Scott and D. G. Nicholls, Energy transduction in intact synaptosomes. Influence of plasma membrane depolarization on the respiration and membrane potential of internal mito chondria in situ, Biochem. J. 186: 21 (1980).Google Scholar
  44. 44.
    E. Hansson, I. Jacobson, R. Venema and A. Sellstrom, Measurement of the membrane potential of isolated nerve terminals by the lipophilic cation l3H]Triphenylmethylphosphorium bromide, J. Neurochem. 34: 569 (1980).PubMedCrossRefGoogle Scholar
  45. 45.
    M. Crompton, I. Heidi and E. Carafoli, The activation by potassium of the sodium-calcium carrier of cardiac mitochondria, FEBS Lett. 115: 257 (1980).PubMedCrossRefGoogle Scholar
  46. 46.
    J. D.Robinson, Effects of cations on (Ca2++Mg2+)-activated ATPase from rat brain, J. Neurochem. 37: 140 (1981).PubMedCrossRefGoogle Scholar
  47. 47.
    L. J. Mullins and F. J. Brinley, Jr., Sensitivity of calcium efflux from squid axons to changes in membrane potential, J. Gen. Physiol. 65: 135 (1975).PubMedCrossRefGoogle Scholar
  48. 48.
    B. K. Krueger, R. W. Ratzlaff, G. R. Stricharz and M. P. Blaustein, Saxitoxin binding to synaptosomes, membranes and solubilized binding sites from rat brain, J. Membrane Biol. 50: 287 (1979).CrossRefGoogle Scholar
  49. 49.
    H. Rahmimoff and E. Abramovitz, Ca transport and ATPase activity of synaptosomal vesicles from rat brain, FEBS Letters 92: 163 163 (1978).CrossRefGoogle Scholar
  50. 50.
    R. F. Ledvora and C. Hegyvary, Dependence of Na+/Ca2+ exchange and Ca2+/Ca2+ exchange on monovalent cations, Biochim. Biophys. Acta 729: 123 (1983).Google Scholar
  51. 51.
    B. J. R. Pitts, Stoichiometry of sodium-calcium exchange in cardiac sarcolemmal vesicles, J. Biol. Chem. 254: 6232 (1979).PubMedGoogle Scholar
  52. 52.
    K. D. Philipson and A. Y. Nishimoto, Na+-Cat+ exchange is affected by membrane potential in cardiac sarcolemal vesicles, J. Biol. Chem. 255: 6880 (1980).PubMedGoogle Scholar
  53. 53.
    P. Caroni, L. Reinlib and E. carafoli, Charge movement during the Na+-Ca2+ exchange in heart sarcolemal vesicles, Proc. Natl. Acad. Sci. 77: 6354 (1980).PubMedCrossRefGoogle Scholar
  54. 54.
    J. P. Reeves and J. L. Sutko, Sodium-calcium exchange activity generates a current in cardic membrane vesicles, Science 208; 1461 (1980).PubMedCrossRefGoogle Scholar
  55. 55.
    H. Affolder and E. Carafoli, The Na+/Ca2+ antiporter of heart mitochondria operates electroneutrally, Biochem. Biophys. Res. Comm. 95: 193 (1980).Google Scholar
  56. 56.
    C. F. McGraw, D. A. Nachshen and M. P. Blaustein, Calcium movement and regulation in presynaptic nerve terminals, In:Calcium and Cell Functions, vol. II, W. Y. Cheung, ed., Academic Press, New York (1982).Google Scholar
  57. 57.
    R. Methas and G. Nikezic, The effect of sodium on deporarization-induced calcium uptake and acetylcholine release by synaptosomes, Biochim. Biophys. Acta 687: 340 (1982).Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • A. P. Carvalho
    • 1
  • O. P. Coutinho
    • 1
  • V. M. C. Madeira
    • 1
  • C. A. M. Carvalho
    • 1
  1. 1.Center for Cell Biology, Department of ZoologyUniversity of CoimbraCoimbra CodexPortugal

Personalised recommendations