Biomembranes pp 249-256 | Cite as

Mitochondrial ATPase

  • Lars Ernster
Part of the NATO ASI Series book series (NSSA, volume 76)


The mitochondrial inner membrane is the site of the electron-transport system known as the respiratory chain and of the ATP-synthesizing system, or ATP synthase, by which energy liberated during electron transport is utilized for ATP synthesis from ADP and Pi. It is now generally recognized (1) that both the electron-transport and the ATP-synthesizing systems are capable of generating a proton gradient (\( \Delta _{\mu {H^ + }}^ \sim \))across the membrane, giving rise to a “protonmotive force” that can serve as an energy-transfer device between the two systems, in accordance with the chemiosmotic theory of Mitchell (2). It is also generally recognized that similar, protonmotive ATP synthases are responsible for the process of photophosphorylation taking place in the thylakoid membrane of chloroplasts and for both oxidative phosphorylation and photophosphorylation in the plasma membrane of prokaryotes. A proton gradient also serves as the driving force for a number of other membrane-associated energy-requiring processes such as the energy-linked nicotinamide nucleotide transhydrogenase, the active transport of various ions and metabolites, mitochondrial thermogenesis, bacterial locomotion and chemotaxis, etc. (3).


Proton Gradient ATPase Inhibitor Mitochondrial ATPase Protonmotive Force Chemiosmotic Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boyer, P.D., Chance, B., Ernster, L., Mitchell, P., Racker, E., and Slater, E.C., 1977, Ann. Rev. Biochem., 46: 955–1026.PubMedCrossRefGoogle Scholar
  2. 2.
    Mitchell, P., 1961, Nature, 191: 144–148.PubMedCrossRefGoogle Scholar
  3. 3.
    Skulachev, V.P., and Hinkle, P.C. (eds.), Chemiosmotic Proton Circuits in Biological Membranes, 1981, Addison-Wesley, Reading.Google Scholar
  4. 4.
    Pullman, M.E., Penefsky, H.S., Datta, A., and Racker, E., 1960, J. Biol. Chem., 235: 3322–3329.PubMedGoogle Scholar
  5. 5.
    Penefsky, H.S., Pullman, M.E., Datta, A., and Racker, E., 1960, J. Biol. Chem., 235: 3330–3336.PubMedGoogle Scholar
  6. 6.
    Amzel, L.M., and Pedersen, P.L., 1983, Ann. Rev. Biochem., 52: 801–824.PubMedCrossRefGoogle Scholar
  7. 7.
    Senior, A.E., and Wise, J.G., 1983, J. Membrane Biol., 73: 105–124.CrossRefGoogle Scholar
  8. 8.
    Walker, J.E., Saraste, M., Runswick, M.J., and Gay, N.J., 1982, FEBS Lett., 146: 393–396.PubMedCrossRefGoogle Scholar
  9. 8.
    Walker, J.E., Saraste, M., Runswick, M.J., and Gay, N.J., 1982, FEBS Lett., 146: 393–396.PubMedCrossRefGoogle Scholar
  10. 10.
    Mitchell, P., 1979, Eur. J. Biochem., 94: 1–20.CrossRefGoogle Scholar
  11. 11.
    Boyer, P.D., 1975, FEBS Lett., 58: 1–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Boyer, P.D., 1974, Biochim. Biophys. Acta. Libr., 13: 289–301.Google Scholar
  13. 13.
    Slater, E.C., 1974, Biochim. Biophys. Acta Libr., 13: 1–20.Google Scholar
  14. 14.
    Grubmeyer, C., Cross, R.L., and Penefsky, H.S., 1983, J. Biol. Chem., 257: 12092–12100.Google Scholar
  15. 15.
    Cross, R.L., Grubmeyer, C., and Penefsky, H.S., 1982, J. Biol. Chem., 257: 12101–12105.PubMedGoogle Scholar
  16. 16.
    Kayalar, C., Rosing, J., and Boyer, P.D., 1976, Biochim. Biophys. Res. Commun., 72, 1153–1159.Google Scholar
  17. 17.
    Kayalar, C., Rosing, J., and Boyer, P.D., 1977, J. Biol. Chem., 252: 2486–2491.PubMedGoogle Scholar
  18. 18.
    Gresser, M.J., Myers, J.A., and Boyer, P.D., 1982, J. Biol. Chem., 257: 12030–12038.PubMedGoogle Scholar
  19. 19.
    Cross, R.L., 1981, Ann. Rev. Biochem., 50: 681–714.PubMedCrossRefGoogle Scholar
  20. 20.
    Boyer, P.D., Cross, R.L., and Momsen, W., 1973, Proc. Natl. Acad. Sci. USA, 70: 2837–2839.PubMedCrossRefGoogle Scholar
  21. 21.
    Boyer, P.D., Smith, D.J., Rosing, J., and Kayalar, C., 1973, In Electron Transfer Chains and Oxidative Phosphorylation, E. Quogliariello, S. Papa, E. Palmieri, E.C. Slater, N. Siliprandi (eds.), North-Holland, Amsterdam, pp. 361–372.Google Scholar
  22. 22.
    Kayalar, C., Rosing, J., and Boyer, P.D., 1976, Fed. Proc. 35: 1601.Google Scholar
  23. 23.
    Pullman, M.E., and Monroy, G.C., 1962, J. Biol. Chem., 238: 3762–3769.Google Scholar
  24. 24.
    Pedersen, P.L., Scherzmann, K., and Cintrón, N., 1981, Curr. Top. Bioenerg., 11: 149–199.Google Scholar
  25. 25.
    Asami, K., Juntti, K., and Ernster, L., 1970, Biochim. Biophys. Acta, 205: 307–311.PubMedCrossRefGoogle Scholar
  26. 26.
    Horstman, L.L., and Racker, E., 1970, J. Biol. Chem., 245: 13361344.Google Scholar
  27. 27.
    Van de Stadt, R.J., De Boer, B.L., and van Dam, K., 1973, Biochim. Biophys. Acta, 292: 338–349.PubMedCrossRefGoogle Scholar
  28. 28.
    Ernster, L., Juntti, K., and Asami, K., 1973, J. Bioenerg., 4: 149–159.PubMedCrossRefGoogle Scholar
  29. 29.
    Ernster, L., Asami, K., Juntti, K., Coleman, J., and Norden-brand, K., 1977, In The Structure of Biological Membranes. Nobel Symp. No. 34, S. Abrahamsson and I. Pascher (eds.) pp. 135–156, Plenum Publishing Co., New York.CrossRefGoogle Scholar
  30. 30.
    Gómez-Puyou, M.T., Gómez-Puyou, A., and Ernster, L., 1979, Biochim. Biophys. Acta, 547: 252–257.Google Scholar
  31. 31.
    Harris, D.A., and Crofts, A.R., 1978, Biochim. Biophys. Acta, 502: 87–102.PubMedCrossRefGoogle Scholar
  32. 32.
    Gómez-Puyou, M.T., Gavilanes, M., Gómez-Puyou, A., and Ernster, L., 1980, Biochim. Biophys. Acta. 592: 396–405.PubMedCrossRefGoogle Scholar
  33. 33.
    Hillered, L., Muchiri, P.M., Nordenbrand, K., and Ernster, L., 1983, FEBS Lett., 154: 247–250.PubMedCrossRefGoogle Scholar
  34. 34.
    Power, J., Cross, R.L., and Harris, D.A., 1983, Biochim. Biophys. Acta, 724: 128–141.Google Scholar
  35. 34.
    Power, J., Cross, R.L., and Harris, D.A., 1983, Biochim. Biophys. Acta, 724: 128–141.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Lars Ernster
    • 1
  1. 1.Department of Biochemistry, Arrhenius LaboratoryUniversity of StockholmStockholmSweden

Personalised recommendations