Biomembranes pp 225-248 | Cite as

Photoreceptor Membranes: Models for Excitable Membranes?

  • Frans J. M. Daemen
  • Willem J. de Grip
Part of the NATO ASI Series book series (NSSA, volume 76)


Sensory cells are a specialized type of nerve cells, membrane regions of which recognize certain external stimuli like light, heat or pressure. Upon excitation this signal is converted into a receptor potential, a graded potential fluctuation of the plasma membrane. The receptor potential generates, either in the axone of the same cell or, after synaptic transmission in secondary neurones, an action potential for further expedition of the signal. Clearly this sensory transduction process is largely membrane-coupled. During the last two decades an appealing increase in knowledge on composition, structure and dynamics of biomembranes in general has been paralleled by a deepened insight in structure and function of excitable membranes, gradually allowing to relate more closely (electro)physiological parameters with biochemically definable entities or processes.


Visual Pigment Disk Membrane Excitable Membrane Bovine Rhodopsin Photoreceptor Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Stryer, J.B. Hurley, and B.K-K. Fung, First stage of amplification in the cyclic-nucleotide cascade of vision, Current Topics in Membrane and Transport 15: 93 (1981).CrossRefGoogle Scholar
  2. 2.
    M.E. Abood, J.B. Hurley, M.C. Pappone, H.R. Bourne, and L. Stryer, Functional homology between signal-coupling proteins, J. Biol. Chem. 287: 10540 (1982).Google Scholar
  3. 3.
    M.W. Bitensky, M.A. Wheeler, M.M. Rasenick, A. Yamazaki, P. Stein, K.R. Halliday, and G.L. Wheeler, Functional exchange of components between light-activated photoreceptor phosphodiesterase and hormone-activated adenylate cyclase systems, Proc. Natl. Acad. Sci. USA 79: 3408 (1982).PubMedCrossRefGoogle Scholar
  4. 4.
    W.A. Hagins and S. Yoshikami, A role for Cat+ in excitation of retinal rods and cones, Exp. Eye Res. 18: 299 (1974).PubMedCrossRefGoogle Scholar
  5. 5.
    P.P.M. Schnetkamp, U.B. Kaupp, and W. Junge, Interfacial potentials at the disk membranes of isolated intact rod outer segments as a function of the occupation state of the intradiskal cation-exchange binding sites, Biochim. Biophys. Acta 642: 213 (1981).CrossRefGoogle Scholar
  6. 6.
    P. Fatt, An extended Ca2+ hypothesis of visual transduction with a role for cyclic GMP, FEBS Lett. 149: 159 (1982).PubMedCrossRefGoogle Scholar
  7. 7.
    J.S. George and W.A. Hagins, Control of Ca2+ in rod outer segment disks by light and cyclic GMP, Nature 303: 344 (1983).PubMedCrossRefGoogle Scholar
  8. 8.
    K.M.P. Kamps, W.J. de Grip, and F.J.M. Daemen, Use of a density modification technique to isolate the rod photoreceptor plasma membrane, Biochim. Biophys. Acta 687: 296 (1982).CrossRefGoogle Scholar
  9. 9.
    W.J. de Grip, F.J.M. Daemen, and S.L. Bonting, Isolation and purification of bovine rhodopsin, Methods Enzymol. 67: 301 (1980).PubMedCrossRefGoogle Scholar
  10. 10.
    P.P.M. Schnetkamp and F.J.M. Daemen, Isolation and characterization of osmotically sealed bovine rod outer segments, Methods Enzymol. 81: 110 (1982).PubMedCrossRefGoogle Scholar
  11. 11.
    A.J. Adams, M. Tanaka, and H. Shichi, Isolation of intact disks by concanavalin A columns, Methods Enzymol. 81: 61 (1982).PubMedCrossRefGoogle Scholar
  12. 12.
    H. Kühn, Light-and GTP-regulated interaction of GTPase and other proteins with bovine photoreceptor membranes, Nature 283: 587 (1980).PubMedCrossRefGoogle Scholar
  13. 13.
    V.M. Clark and M.O. Hall, Labeling of bovine rod outer segment surface proteins with 125I, Exp. Eye Res. 22: 847 (1982).CrossRefGoogle Scholar
  14. 14.
    F.J.M. Daemen, Vertebrate rod outer segment membranes, Biochim. Biophys. Acta 300: 255 (1973).Google Scholar
  15. 15.
    T.G. Wheeler, R.M. Benolken, and R.E. Anderson, Visual membranes: specificity of fatty acid precursors for electrical response to illumination, Science 188: 1312 (1975).PubMedCrossRefGoogle Scholar
  16. 16.
    R.E. Anderson, Essential fatty acid deficiency and photoreceptor membrane renewal: a reappraisal, Invest. Ophthalmol. 17: 1102 (1978).Google Scholar
  17. 17.
    K. Hong and W.L. Hubbell,Lipid requirements for rhodopsin regenerability, Biochemistry 12: 4517 (1973).PubMedCrossRefGoogle Scholar
  18. 18.
    D.F. O’Brien, L.F. Costa, and R.A. Ott, Photochemical functionality of rhodopsin-phospholipid recombinant membranes, Biochemistry 16: 1295 (1977).PubMedCrossRefGoogle Scholar
  19. 19.
    P.J.G.M. van Breugel, P.H.M. Geurts, F.J.M. Daemen, and S.L. Bonting, Effects of lateral aggregation on rhodopsin in phospholipase C-treated photoreceptor membrane, Biochim. Biophys. Acta 509: 136 (1978).CrossRefGoogle Scholar
  20. 20.
    B. de Kruijff, P.R. Cullis, and A.J. Verkleij, Non-bilayer lipid structures in model and biological membranes, Trends Biol. Sci. 5: 79 (1980).Google Scholar
  21. 21.
    S.M. Gruner, K.J. Rothschild, and N.A. Clark, X-ray diffraction and electron microscope study of phase separation in rod outer segment photoreceptor membrane multilayers, Biophys. J. 39: 241 (1982).PubMedCrossRefGoogle Scholar
  22. 22.
    J.M. Corless and M.J. Costello, Paracrystalline inclusions associated with the disk membranes of frog retinal rod outer segments, Exp. Eye Res. 32: 217 (1981).PubMedCrossRefGoogle Scholar
  23. 23.
    W.J. de Grip, E.H.S. Drenthe, C.J.A. van Echteld, B. de Kruijff, and A.J. Verkleij, A possible role of rhodopsin in maintaining bilayer structure in the photoreceptor membrane, Biochim. Biophys. Acta 558: 330 (1979).CrossRefGoogle Scholar
  24. 24.
    A.J. Deese, E.A. Dratz, and M.F. Brown, Retinal rod outer segment lipids form bilayers in the presence and absence of rhodopsin 31P NMR study, FEBS Lett. 124: 93 (1981).PubMedCrossRefGoogle Scholar
  25. 25.
    P.P.M. Schnetkamp, Calcium translocation and storage of isolated intact cattle rod outer segments in darkness, Biochim. Biophys. Acta 554: 441 (1979).PubMedCrossRefGoogle Scholar
  26. 26.
    E.H.S. Drenthe, A.A. Klampmakers, S.L. Bonting, and F.J.M. Daemen, Transbilayer distribution of phospholipids in photo-receptor membrane studied with trinitrobenzenesulfonate alone and in combination with phospholipase D, Biochim. Biophys. Acta 603: 130 (1980).CrossRefGoogle Scholar
  27. 27.
    D.S. Papermaster, B.G. Schneider, M.A. Zorn, and J.P. Kraehenbuhl, Immunocytochemical localization of a large intrinsic membrane protein to the incisures and margins of frog rod outer segment disks, J. Cell Biol. 78: 415 (1978).PubMedCrossRefGoogle Scholar
  28. 28.
    R. Hubbard and G. Wald, Cis-trans isomers of vitamin A and retinene in the rhodopsin system, J. Gen. Physiol. 36: 269 (1952)PubMedCrossRefGoogle Scholar
  29. 29.
    Yv. A. Ovchinnikov, Rhodopsin and bacteriorhodopsin: structure-function relationships, FEBS Lett. 148: 179 (1982).CrossRefGoogle Scholar
  30. 30.
    P.A. Hargrave, J.H. McDowell, D.R. Curtis, J.K. Wang, E. Juszczak, S.L. Fong, J.K. Rao, and P. Argos, The structure of bovine rhodopsin, Biophys. Struct. Mech. 9: 235 (1983).Google Scholar
  31. 31.
    H. Shichi and E. Shelton, Assessment of physiological integrity of sonicated retinal rod membranes, J. Supramol. Struct. 2: 7 (1974).PubMedCrossRefGoogle Scholar
  32. 32.
    G.W. Stubbs, H.G. Smith, and B.J. Litman, Alkyl glucosides as effective solubilizing agents for bovine rhodopsin. A comparison with several commonly used detergents, Biochim. Biophys. Acta 426: 46 (1976).CrossRefGoogle Scholar
  33. 33.
    K.J. Rothschild, W.J. de Grip, and R. Sanches, Fourier transform infrared study of photoreceptor membrane, Biochim. Biophys. Acta 596: 338 (1980).PubMedCrossRefGoogle Scholar
  34. 34.
    M. Chabre, Diamagnetic anisotropy and orientation of a-helix in frog rhodopsin and meta II intermediate. Proc. Natl. Acad. Sci. USA 75: 5471 (1978).PubMedCrossRefGoogle Scholar
  35. 35.
    K.J. Rothschild, J.R. Andrew, W.J. de Grip, and H.E. Stanley, Opsin structure probed by Raman spectroscopy of photoreceptor membranes, Science 191: 1176 (1976).PubMedCrossRefGoogle Scholar
  36. 36.
    E.A. Dratz and P.A. Hargrave, The structure of rhodopsin and the rod outer segment disk membrane. Trends Biochem. Sci. 8: 128 (1983).Google Scholar
  37. 37.
    D. Bownds, Site of attachment of retinal in rhodopsin. Nature 216: 1178 (1967).PubMedCrossRefGoogle Scholar
  38. 38.
    R.S. Fager, P. Sejnowski and E.W. Abrahamson, Aqueous cyanohydroborate reduction of the rhodopsin chromophore, Biochem. Biophys. Res. Commun. 47: 1244 (1972).CrossRefGoogle Scholar
  39. 39.
    W.J. de Grip, S.L. Bonting, and F.J.M. Daemen, The binding site of retinaldehyde in cattle rhodopsin, Biochim. Biophys. Acta 303: 189 (1973).Google Scholar
  40. 40.
    W.J. de Grip and F.J.M. Daemen, Sulfhydryl chemistry of rhodopsin, Methods Enzymol. 81: 223 (1982).PubMedCrossRefGoogle Scholar
  41. F.J.M. Daemen, P.J.G.M. van Breugel, P.A.A. Jansen, and S.L. Bonting, Relation between sulfhydryl groups and properties of rhodopsin studied by means of methylmercuric iodide. Biochim. Biophys. Acta 453:374 (1976).Google Scholar
  42. 42.
    W. Kühne, Chemische Vorgänge in der Netzhaut, in “Handbuch der Physiologie, Vol. 31”, L. Hermann, ed., Verlag von F.C.W. Vogel, Leipzig, p. 235 (1879).Google Scholar
  43. 43.
    G. Wald, Molecular basis of visual excitation, Science 162: 230 (1968).PubMedCrossRefGoogle Scholar
  44. 44.
    B. Aton, A.G. Doukas, D. Narva, R.H. Callender, U. Dinur, and B. Honig, Resonance Raman studies of the primary photochemical event in visual pigments, Biophys. J. 29: 79 (1980).Google Scholar
  45. 45.
    G. Eyring, B. Curry, A. Broek, J. Lugtenburg, and R. Mathies, Assignment and interpretation of hydrogen out-of-plane vibrations in the resonance Raman spectra of rhodopsin and batho-rhodopsin, Biochemistry 21: 384 (1982).PubMedCrossRefGoogle Scholar
  46. 46.
    K.J. Rothschild, W.A. Cantore, and H. Marrero, Fourier transform infrared difference spectra of intermediates in rhodopsin bleaching, Science 219: 1333 (1983).PubMedCrossRefGoogle Scholar
  47. 47.
    B. Honig, U. Dinur, K. Nakanishi, V. Balogh-Nair, M.A. Gawinowicz, M. Aruaboldi, and M.G. Motto, An external point-charge model for wavelength regulation in visual pigments, J. Am. Chem. Soc. 101: 7084 (1979).CrossRefGoogle Scholar
  48. 48.
    J. Pande, A. Pande, and R.H. Callender, On the chromophore configuration of metarhodopsin II, Photochem. Photobiol. 36: 107 (1982).CrossRefGoogle Scholar
  49. 49.
    J.M. Leclercq, P. Dupuis, and C. Sándorfy, Possibility of a double well potential in the proton bridge of visual pigments and bacterio-rhodopsin. Croat. Chem. Acta 55: 105 (1982).Google Scholar
  50. 50.
    J.M. Shriver, G.D. Mateescu, and E.W. Abrahamson, 13C NMR spectroscopy of the chromophore of rhodopsin, Methods Enzymol. 81: 698 (1982).PubMedCrossRefGoogle Scholar
  51. 51.
    K.J. Rothschild and H. Marrero, Infrared evidence that the Schiff base of bacteriorhodopsin is protonated: bR 570 and K intermediates, Proc. Natl. Acad. Sci. USA 79: 4045 (1982).PubMedCrossRefGoogle Scholar
  52. 52.
    T.P. Williams, An isochromic change in the bleaching of rhodopsin, Vision Res. 10: 525 (1970).PubMedCrossRefGoogle Scholar
  53. 53.
    N. Sasaki, F. Tokunaga, and I. Yoshizawa, Two forms of intermediates of frog rhodopsin in rod outer segments, Biochim. Biophys. Acta 722: 80 (1983).CrossRefGoogle Scholar
  54. 54.
    K. Tansley, The regeneration of visual purple: its relation to dark adaptation and night blindness, J. Physiol. 71: 442 (1931).PubMedGoogle Scholar
  55. 55.
    W.J. de Grip, Thermal stability of rhodopsin and opsin in some novel detergents, Methods Enzymol. 81: 256 (1982).PubMedCrossRefGoogle Scholar
  56. 56.
    R.J.C.F. Margry, C.W.M. Jacobs, W.J. de Grip, and F.J.M. Daemen, Interference of detergents in immunoassays of rhodopsin, Vision Res. 22: 1447 (1982).PubMedCrossRefGoogle Scholar
  57. 57.
    J.J. Schalken, R.J.C.F. Margry, W.J. de Grip, and F.J.M. Daemen, A radioimmunoassay specific for opsin, Biochim. Biophys. Acta 742: 471 (1983).CrossRefGoogle Scholar
  58. 58.
    M.L. Applebury, D.M. Zuckerman, A.A. Lamola, and T.M. Jovin, Rhodopsin. Purification and recombination with phospholipids assayed by the metarhodopsin I → metarhodopsin II transition, Biochemistry 13: 3448 (1974).PubMedCrossRefGoogle Scholar
  59. 59.
    A. Watts, I.D. Volotovski, and D. Marsh, Rhodopsin-lipid associations in bovine rod outer segment membranes. Identification of immobilized lipid by spin labels, Biochemistry 18: 5006 (1979).CrossRefGoogle Scholar
  60. 60.
    T.H. Fisher and T.P. Williams, The effect of phospholipid structure on the thermal stability of rhodopsin. Biochim. Biophys. Acta 707: 273 (1982).CrossRefGoogle Scholar
  61. 61.
    W.J. de Grip, J. Olive, and P.H.M. Bovee-Geurts, Reversible modulation of rhodopsin photolysis in pure phosphatidylserine membranes, Biochim. Biophys. Acta 734: 168 (1983).CrossRefGoogle Scholar
  62. 62.
    A. Kusumi and J.S. Hyde, Spin-label saturation-transfer electron spin resonance detection of transient association of rhodopsin in reconstituted membranes, Biochemistry 21: 5978 (1982).PubMedCrossRefGoogle Scholar
  63. 63.
    J. Davoust, B.M. Schoot, and Ph.F. Devaux, Physical modifications of rhodopsin boundary lipids in lecithinrhodopsin complexes: A spin-label study, Proc. Natl. Acad. Sci. USA 76: 2755 (1979).PubMedCrossRefGoogle Scholar
  64. 64.
    G. Wald, J. Durell, and R.C.C. St. George, The light reaction in the bleaching of rhodopsin, Science 111: 17 (1950).CrossRefGoogle Scholar
  65. 65.
    P.K. Brown, Rhodopsin rotates in the visual receptor membrane, Nature New Biol. 236: 35 (1972).PubMedGoogle Scholar
  66. 66.
    D. Emeis, H. Kühn, J. Reichert, and K.P. Hoffman, Complex formation between metarhodopsin II and GTP-binding protein in bovine photoreceptor membranes leads to a shift of the photoproduct equilibrium, FEBS Lett. 143: 29 (1982).PubMedCrossRefGoogle Scholar
  67. 67.
    R.G. Matthews, R. Hubbard, P.K. Brown, and S.G. Wald, Tautomeric forms of metarhodopsin, J. Gen. Physiol. 47: 215 (1963).PubMedCrossRefGoogle Scholar
  68. 68.
    S.E. Ostroy, F. Erhardt, and E.W. Abrahamson, Protein configuration changes in the photolysis of rhodopsin, Biochim. Biophys. Acta 112: 265 (1966).CrossRefGoogle Scholar
  69. 69.
    T.P. Williams, Dynamics of opsin, a visual protein, Acts Chem. Res. 8: 107 (1975).CrossRefGoogle Scholar
  70. 70.
    C.M. Regan, W.J. de Grip, F.J.M. Daemen, and S.L. Bonting, Sulfhydryl group reactivity as a probe of transient protein conformational changes during rhodopsin photolysis, Biochim. Biophys. Acta 537: 145 (1978).Google Scholar
  71. 71.
    N. Bennett, M. Michel-Villaz, and H. Kühn, Light induced interactions between rhodopsin and the GTP-binding protein, Eur. J. Biochem. 127: 97 (1982).PubMedCrossRefGoogle Scholar
  72. 72.
    W.A. Hagins, The visual process: excitatory mechanism in the primary receptor cells, Ann. Rev. Biophys. Bioeng. 1: 131 (1972).CrossRefGoogle Scholar
  73. 73.
    C.N. Rafferty, Light induced perturbation of aromatic residues in bovine rhodopsin and bacteriorhodopsin, Photochem. Photobiol. 29: 109 (1979).CrossRefGoogle Scholar
  74. 74.
    J.E. Dowling, Chemistry of visual adaptation in the rat, Nature 188: 114 (1960).PubMedCrossRefGoogle Scholar
  75. 75.
    F. Lion, J.P. Rotmans, F.J.M. Daemen, and S.L. Bonting, Stereo-specificity of ocular retinol dehydrogenases and the visual cycle, Biochim. Biophys. Acta 384: 283 (1975).Google Scholar
  76. 76.
    C.D.B. Bridges, Retinoids in photosensitive systems, in: “The Retinoids”, M.B. Sorn, A.B. Roberts and D.S. Goodman, eds., Acad. Press, New York (in press).Google Scholar
  77. 77.
    P.A. Liebman, M.W. Kaplan, W.S. Jagger, and F.G. Bargoot, Membrane structure changes in rod outer segments associated with rhodopsin bleaching, Nature 251: 31 (1974).PubMedCrossRefGoogle Scholar
  78. 78.
    M. Chabre, X-ray diffraction studies of retinal rods I. Structure of the disk membrane, effect of illumination, Biochim. Biophys. Acta 382: 322 (1975).CrossRefGoogle Scholar
  79. 79.
    R. Hubbard, The thermal stability of rhodopsin and opsin, J. Gen. Physiol. 42: 259 (1958).PubMedCrossRefGoogle Scholar
  80. 80.
    W.J. de Grip, F.J.M. Daemen, and S.L. Bonting, Amino group modification in bovine rod photoreceptor membranes, Biochim. Biophys. Acta 323: 125 (1973).CrossRefGoogle Scholar
  81. 81.
    Y.S. Chen and W.L. Hubbell, Temperature- and light-dependent structural changes in rhodopsin lipid membranes, Exp. Eye Res. 117: 517 (1973).CrossRefGoogle Scholar
  82. 82.
    G. Wald and P.K. Brown, Synthesis and bleaching of rhodopsin, Nature 177: 174 (1956).PubMedCrossRefGoogle Scholar
  83. 83.
    H. Matsumoto and I. Yoshizama, Recognition of opsin to the longitudinal length of retinal isomers in the formation of rhodopsin, Vision Res. 18: 607 (1978).PubMedCrossRefGoogle Scholar
  84. 84.
    F.J.M. Daemen, The chromophore binding space of opsin, Nature 276: 847 (1978).PubMedCrossRefGoogle Scholar
  85. 85.
    R. Paulsen and J. Bentrop, Activation of rhodopsin phosphorylation is triggered by the lumirhodopsin-metarhodopsin I transition, Nature 302: 417 (1983).PubMedCrossRefGoogle Scholar
  86. 86.
    U. Wilden and H. Kühn, Light-dependent phosphorylation of rhodopsin: number of phosphorylation sites, Biochemistry 21: 3014 (1982).PubMedCrossRefGoogle Scholar
  87. 87.
    R.A. Young, Visual cells and the concept of renewal, Invest. Ophthalmol. 15: 700 (1976).Google Scholar
  88. 88.
    M.O. Hall, D. Bok, and A.D.E. Bacharach, Biosynthesis and assembly of the rod outer segment membrane sytem. Formation and fate of visual pigment in the frog retina, J. Mol. Biol. 45: 397 (1969).PubMedCrossRefGoogle Scholar
  89. 89.
    W.J. Schmidt, Polarisationsoptische Analyse eines Eiweiss lipoid Systems, erlautert am Aussenglied der Sehzellen, Kolloid Z. 85: 137 (1938).CrossRefGoogle Scholar
  90. 90.
    R.A. Cone, Rotational diffusion of rhodopsin in the visual receptor membrane, Nature New Biol. 236: 39 (1972).PubMedGoogle Scholar
  91. 91.
    P.A. Liebman and G. Entine, Lateral diffusion of visual pigment in photoreceptor disk membranes, Science 185: 457 (1974).PubMedCrossRefGoogle Scholar
  92. 92.
    P.P.M. Schnetkamp, Ion selectivity of the cation transport system of isolated intact cattle rod outer segments, Biochim. Biophys. Acta 598: 66 (1980).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Frans J. M. Daemen
    • 1
  • Willem J. de Grip
    • 1
  1. 1.Department of BiochemistryUniversity of NijmegenNijmegenThe Netherlands

Personalised recommendations