Advertisement

The Use of Transmission Electron Microscopy of Ultrathin Sections for the Characterization of the Ultrastructure of Normal and Damaged Bacterial Membranes

  • M. T. Silva
Chapter
Part of the NATO ASI Series book series (NSSA, volume 76)

Abstract

In the present review we shall discuss the use of some conventional techniques for the study of bacterial membranes by transmission electron microscopy of ultrathin sections.As it will be seen,such techniques,when correctly used,allow a useful analysis of bacterial membrane ultrastructure,including the characterization of the normal versus damaged membranes and the interpretation of the molecular structure of the membranes to a certain depth.By conventional electron microscopy techniques we mean fixation by aldehydes-OsO4 -uranyl or OsO4 -uranyl and embedding in the epoxy type plastics.Other less conventional procedures are available for specific purposes;details of such methods can be found in the Literature 1,2,3,4,5.

Keywords

Outer Membrane Outer Layer Cytoplasmic Membrane Bacterial Membrane Teichoic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. C. Pease, Histological techniques for electron microscopy. Acad. Press, New York and London (1964).Google Scholar
  2. 2.
    M. A. Hayat,Principles and techniques of electron microscopy. Van Nostrand Reinhold Co.,New York,vol. 1 (1970).Google Scholar
  3. 3.
    J. C. Benichou and A. Ryter,Mise au point de la technique de coupes a congelation pour les bactéries Gram+ et Gram-, J. Microscopie, 17: 227 (1973).Google Scholar
  4. 4.
    C. Weibul,E. Carlemalm,W. Villiger,E. Kellenberger,J. Fakan, A. Gautier and C. Larsson,Low-temperature embedding procedures applied to chloroplasts,J. Ultrastr. Res., 73: 233 (1980).CrossRefGoogle Scholar
  5. 5.
    D. C. Pease,Unembedded,aldehyde-fixed tissue, sectioned for transmission electron microscopy,J. Ultrastr. Res., 79: 250 (1982).Google Scholar
  6. 6.
    M. T. Silva,Changes in the ultrastructure of the cytoplasmic and intracytoplasmic membranes of several gram-positive bacteria by variations in OsO4 fixation, J. Microscopy, 93: 227 (1971).CrossRefGoogle Scholar
  7. 7.
    M. T. Silva,Ultrastructure of the membranes of gram-positive bacteria as influenced by fixatives and membrane-damaging treatments,in. Silva,Ultrastructure of the membranes of gram-positive bacteria as influenced by fixatives and membrane-damaging treatments,in “Bianembranes-Lipids,Proteins and Receptors”, R. M. Burton and L. Packer,eds.,BI-Science Publ. Div., Webster Groves,Mo.,USA,pg. 255 (1975).Google Scholar
  8. 8.
    M.T.Silva and Paula M.Macedo,Ultrastructure ofMycobacterium lepraeand other acid-fast bacteria as influenced by fixation conditions,Ann.Microbiol.(Inst. Pasteur),133B:59(1982)CrossRefGoogle Scholar
  9. 9.
    M.T.Silva and Paula M.Macedo,The interpretation of the ultrastructure ofMycobacteriumcells in transmission electron microscopy of ultrathin sections,Int.J.Leprosy,in press(1983)Google Scholar
  10. 10.
    M. T. Silva and Paula M. Macedo,Electron microscopic study ofMycobacterium leprae membrane,Int.J.Leprosy,in press(1983)Google Scholar
  11. 11.
    M. T. Silva and J. C. F. Sousa,Ultrastructure of the cell wall and cytoplasmic membrane of gram-negative bacteria with different fixation techniques, J. Bacteriol., 113: 953 (1973).PubMedGoogle Scholar
  12. 12.
    M. T. Silva,J. C. F. Sousa,J. J. Polónia,M. A. E. Macedo and Ana M. Parente,Bacterial mesosanes.Real structures or artifacts ?,Biochim. Biophys. Acta, 443: 92 (1976).CrossRefGoogle Scholar
  13. 13.
    M. T. Silva,J. M. Santos-Mota,J. V. C. Melo and F. Carvalho-Guerra,Uranyl salts as fixatives for electron microscopy. Study of the membrane ultrastructure and phospholipid loss in bacilli,Biochim. Biohpys. Acta, 233: 513 (1971).Google Scholar
  14. 14.
    A. Ryter and E. Kellenberger,Etude au microscope électronique de plasmas contenant de l’acide désoxyribonucleique. I.Les nucléoides des bactéries en croissance active,Z. Naturforsch. 13 b: 597 (1958).Google Scholar
  15. 15.
    M. T. Silva,Uranyl salts,in Encyclopedia of Microscopy and Microtechnique,P. Gray,ed.,Van Nostrand Reinhold Co.,New York,pg. 585 (1973).Google Scholar
  16. 16.
    M. V. Vye and D. A. Fischman, The morphological alterations of particulate glycogen by en bloc staining with uranyl acetate, J. Ultrastr. Res., 33: 278 (1970).CrossRefGoogle Scholar
  17. 17.
    J.B.Robertson,P.Lyttleton,K.I.Williamson and R.D.Batt,The effect of fixation procedures on the electron density of polysaccharide granules inNocardia corallina,JUltrastr.Res.,52:321(1975)Google Scholar
  18. 18.
    J. H. Luft,Improvements in epoxy resin embedding methods, J. Biophys. Biochem. Cytol., 9: 409 (1961).CrossRefGoogle Scholar
  19. 19.
    J. H. Venable and R. Goggeshall,A simplified lead citrate stain for use in electron microscopy, J. Cell Biol., 25: 407 (1965).PubMedCrossRefGoogle Scholar
  20. 20.
    J. P. Thiéry,Mise en evidence des polysaccharides sur coupes fines en microscopie électronique, J. Microscopie, 6: 987 (1967).Google Scholar
  21. 21.
    J. P. Thiéry and A. Rambourg,Cytochimie des polysaccharides, J. Microscopie, 21: 225 (1974).Google Scholar
  22. 22.
    M.T.Silva,Electron microscopic study on the effect of the oxidation of ultrathin sections ofBacillus cereusandBacillus megaterium.JUltrastr.Res,18:345(1967)Google Scholar
  23. 23.
    M.T.Silva,J.J.Polonia and M.Kocur,The fine structure ofMicrococcus mucilaginosus,J Submicroscopic Cytol,9:53(1977)Google Scholar
  24. 24.
    T.Bergan and MKocur,Stanatococcus mucilaginosusgen.nov,sp.nov,ep.rev,a member of the familyMicrococcacceaeInt.J.Sist Bacteriol,32:374(1982)CrossRefGoogle Scholar
  25. 25.
    N.Rastogi,C.Frehel,A.Ryter and H.L.David,Canparative ultrastructure ofMycobacterium lepraeandMycobacterium aviumin experimental hosts,Ann.Microbiol.(Inst. Pasteur)133B:109(1982)Google Scholar
  26. 26.
    M.T.Silva and Paula M.Macedo,A comparative ultrastructural study of the membrane ofMycobacterium lepraeand of cultivableMycobacteria,BiolCe11,47,in press(1983)Google Scholar
  27. 27.
    M. T. Silva,Paula M. Macedo,R. Salema and Isabel Santos, Improvement in the Thiéry’s reaction by the use of silver vitelinate,Reun. An. Soc. Port. M. E.,abs. 30 (1982).Google Scholar
  28. 28.
    D. C. Pease,Phosphotungstic acid as an electron stain,26th Ann. Meet. E. M. Soc. Am.,pg. 36 (1968).Google Scholar
  29. 29.
    A. Rambourg,Morphological and histochanical aspects of gylcoproteins of the surface of animal cells,Int. J. Cytol., 31: 57 (1971).Google Scholar
  30. 30.
    J. C. Roland,C. A. Lembi and D. J. Morre,Phosphotungstic acid-chromic acid as a selective electron-dense stain for plasma membrane of plant cells,Stain Technol., 47: 195 (1972).Google Scholar
  31. 31.
    J.-E. Fléchon and D. Huneau,Validity of phosphotungstic acid staining of polysaccharides (glycogen) at very low pH on thin sections of glycolmethacrylate embedded material, J. Microscopie, 19: 207 (1974).Google Scholar
  32. 32.
    M. Rosseau and J. Hermier,Localization en microscopie electronique des polysaccharides de la paroi chez les bactéries en sporulation,J. Microscopie Biol. Cell., 23: 237 (1975).Google Scholar
  33. 33.
    J. C. Rolannd,Cytochimie des polysaccharides vegetaux:detection et extraction selectives, J. Microscopie, 21: 233 (1974).Google Scholar
  34. 34.
    P.J.Highton,An electron microscopic study of cell growth and mesosomal structure of Bacillus licheniformis,JUltrastr.Res.,26:130(1969).Google Scholar
  35. 35.
    P.J.Highton,An electron microscopic study of the structure of mesosanal membranes in Bacillus licheniformis,J Ultrastr.Res.,31:247(1970)Google Scholar
  36. 36.
    M. T. Silva,Caracteristicas micranorfologicas e funcionais das membranas de bactérias de gram-positivo.Alteraçöes induzidas por fixadores,substàncias muraliticas e agentes membrano-activos,Ph.D. thesis,Porto (1979).Google Scholar
  37. 37.
    R. F. Dunn,Calibration of magnification in transmission electron microscopy,in. Dunn,Calibration of magnification in transmission electron microscopy,in “Principles and techniques of electron microscopy”, M. A. Hayat,ed.,Van Nostrand Reinhold Co.,New York,vol. 8,pg. 156 (1978).Google Scholar
  38. 38.
    J. Oelze and G. Drews,Membranes of phototrophic bacteria, in. Drews,Membranes of phototrophic bacteria, in “Organization of prokaryotic cell membranes”,B. K. Gosh,ed.,CRC Press,U.S.A.,vol. Il,pg. 131 (1981).Google Scholar
  39. 39.
    R.G.E.Murray,The organelles of bacteria,in. Murray,The organelles of bacteria,in “General Physiology of cell specialization”,D. Mazia and A. Tyler, eds.,McGraw Hill Book Co.,New York,pg.28(1963)Google Scholar
  40. 40.
    W. Epstein and S. C. Schultz,Ion transport and osmoregulation in bacteria,in. Schultz,Ion transport and osmoregulation in bacteria,in “Microbial protoplasts,spheroplasts and L-forms”,L. Guze,ed.,Williams & Wilkins Co.,Baltimore, pg. 186 (1968).Google Scholar
  41. 41.
    M. T. Silva,J. C. F. Sousa,M. A. E. Macedo,J. J. Polonia and Ana M. Parente,Effects of phenethyl alcohol on Baci-lus and Streptococcus J. Bacteriol., 127: 1359 (1976).PubMedGoogle Scholar
  42. 42.
    M. T. Silva,J. C. F. Sousa,J. J. Polónia and Paula M. Macedo, Effects of local anesthetics on bacterial cells, J. Bacteriol., 137: 461 (1979).PubMedGoogle Scholar
  43. 43.
    M. T. Silva,J. J. Polónia,M. A. E. Macedo and Paula M. Macedo,Membrane splitting induced by lipophilic molecules, Biol. Cell., 35: 175 (1979).Google Scholar
  44. 44.
    M. T. Silva,Electron microscopic aspects of membrane alterations during bacterial cell lysis,Exptl. Cell Res., 46: 245 (1967).CrossRefGoogle Scholar
  45. 45.
    M. T. Silva,M. P. Lima,A. F. Fonseca and J. C. F. Sousa,The fine structure of Sporosarcina ureae as related to its taxonomic position, J. Submicr. Cytol., 5: 7 (1973).Google Scholar
  46. 46.
    A. F. Fonseca and M. T. Silva,in preparation.Google Scholar
  47. 47.
    M. T. Silva,Paula M. Macedo,M. H. L. Costa,H. Gonçalves, J. Torgal and H. L. David,Ultrastructural alterations of Mycobacterium leprae in skin biopsies of untreated and treated lepranatous patients, Ann. Microbial. (Inst. Pasteur), 133B: 75 (1982).Google Scholar
  48. 48.
    P. C. Fitz-James,PArticipation of the cytoplasmic membrane in the growth and spore formation of Bacilli,J. Biophys. Biochem. Cytol., 8: 507 (1969).Google Scholar
  49. 49.
    A. Ryter,Structure and function of mesosanes of Gram-positive bacteria,in “Current topics in Microbiology and Immunology” Springer-Verlag,Berlin,vol. 49,pg. 151 (1969).Google Scholar
  50. 50.
    N. Nanninga,Freeze-fracture of microrganisms.Physical and chemical fixation of Bacillus subtilis,in. Nanninga,Freeze-fracture of microrganisms.Physical and chemical fixation of Bacillus subtilis,in “Freeze-etching. Techniques and applications ”,E. L. Benedetti and P. Favard,eds.,Soc. Franç. M. E.,Paris,pg. 151 (1973).Google Scholar
  51. 51.
    N. Fooke-Achterrath,K. G. Likfeld,V. M. Reusch Jr.,U. Aeli, U. Tschope and B. Menge,Close-to-life preservation of Staphylococcus mesosanes for transmission electron microscopy, J. Ultrastr. Res., 49: 270 (1974).CrossRefGoogle Scholar
  52. 52.
    M. L. Higgins,L. C. Parks and L. Daneo-Moore, The mesosome, in. Daneo-Moore,The mesosome, in “Organization of prokaryotic cell membrane”,B. K. Ghosh,ed.,CRC Press,U.S.A.,vol. II,pg. 75 (1981).Google Scholar
  53. 53.
    R. G. Lima,Paula M. Macedo,A. F. S. Gonçalves and M. T. Silva,Effects of detergents on bacterial cells.1-Altera-tons induced in Bacillus subtilis by Triton X-100 and Sodium Dodecyl Sulfate,Reun. An. Soc. Port. M. E.,abs 1 (1979).Google Scholar
  54. 54.
    P. M. Macedo,R. G. Lima and M. T. Silva,Ultrastructural study of the effects of detergents on bacterial cells. 1-Influence of Triton X-100 and Sodium Dodecyl Sulfate on the autolysis of Bacillus subtilis,Reun An. Soc. Port. M. E.,abs 10M (1980)Google Scholar
  55. 55.
    M. T. Silva and Paula M. Macedo,A kinetic study of the isolation of membranes fran Bacillus subtilis,Reun An. Soc. Port. M. E.,abs 30 (1977)Google Scholar
  56. 56.
    M. Egidia Carvaiho and M. T. Silva,Correlation between the muralytic and the bacteriolytic actions of lysozyme.An ultrastructural study in Streptococcus faecalis ATCC 9790,Reun. An. Soc. Port. M. E.,abs 42 (1981).Google Scholar
  57. 57.
    M. T. Silva and J. C. F. Sousa,Ultrastructural alterations induced by moist heat in Bacillus cereus,Appl. Microbiol., 24: 463 (1972).Google Scholar
  58. 58.
    M. T. Silva,J. C. F. Sousa and G. Balassa,Ultrastructural effects of chemical agents and moist heat on Bacillus subtilis.l-Effects on vegetative cells, Ann. Microbiol. (Inst. Pasteur), 128B: 363 (1978).Google Scholar
  59. 59.
    M. T. Silva,A. F. S. Gonçalves and Paula M. Macedo,Effects of tetrazolium molecules on bacterial membranes,Reun. An. Soc. Port. M. E.,abs 11 (1976).Google Scholar
  60. 60.
    J. M. Santos-Mota,M. T. Silva and F. Carvalho-Guerra,Ultrastructural and chemical alterations induced by dicoumarol in Streptococcus faecalis,Biochim. Biophys. Acta, 249: 114 (1971).CrossRefGoogle Scholar
  61. 61.
    A.M.Parente and M.T.Silva,Ultrastructural study of the effects of detergents on bacterial cells.3-Influence of the concentration of TRIS and phosphate buffers on the effects of Triton X-100 and Sodium Dodecyl Sulfate on Escherichia coli and Pseudanonas fluorescens,Reun An.Soc.Port.M.E.,abs 12M(1980)Google Scholar
  62. 62.
    M. N. T. Silva,M. T. Silva and R. G. Lima,Cytoplasmic membrane dissolution at high pH in gram-negatives,Reun. An. Soc. Port. M. E.,abs. 41 (1978).Google Scholar
  63. 63.
    A.M.Parente and M.T.Silva,Ultrastructural study of the autolysis ofPseudanonas fluorescensinduced by osmotic shock,Reun.An.Soc.Port.M.E.,abs.43(1981)Google Scholar
  64. 64.
    J. P. Cabral and M. T. Silva,Ultrastructural effects of Dodine on several gram-negative phytopathogenic bacteria, Reun. An. Soc. Port. M. E.,abs 47 (1981).Google Scholar
  65. 65.
    A. Petitprez and J. C. Derieux,Mise en évidence des polysaccharides sur quelques types de bactéries, J. Microscopie 9: 263 (1970).Google Scholar
  66. 66.
    M. T. Silva and Paula M. Macedo,Ultrastructural characterization of normal and altered cytoplasmic membrane of gran-positive bacteria, in preparation.Google Scholar
  67. 67.
    T. L. Steck,The organization of proteins in the human red blood cell membrane, J. Cell Biol., 62: 1 (1974).PubMedCrossRefGoogle Scholar
  68. 68.
    M. S. Bretscher and M. C. Raff,Mammalian plasma membranes, Nature, 258: 43 (1975).PubMedCrossRefGoogle Scholar
  69. 69.
    J. E. Rothman and J. Lenard,Membrane asymmetry,Science, 195: 743 (1977).Google Scholar
  70. 70.
    J. A. F. Op Den Kamp,Lipid asymmetry in membranes, Ann. Rev. Biochem., 48: 47 (1979).CrossRefGoogle Scholar
  71. 71.
    L. I. Barsukov,V. I. Kulilov and L. D. Bergelson,A lipid transfer protein as a tool in the study of membrane structure.Inside-outside distribution of the phospholipids in the protoplasmic membrane of Micrococcus lysodeikticus B. B. Res. Commun., 71: 704 (1976).CrossRefGoogle Scholar
  72. 72.
    D. G. Bishop,J. A. F. Op Den Kamp and L. L. M. Van Deenen, The distribution of lipids in the protoplast membranes of Bacillus subtilis,Europ. J. Biochem., 80: 381 (1977).Google Scholar
  73. 73.
    J. E. Rothman and E. P. Kennedy,Asymmetric distribution of phospholipids in the membrane of Bacillus megaterium J. Mol. Biol., 110: 603 (1977).PubMedCrossRefGoogle Scholar
  74. 74.
    J.C.Paton,B.K.May and W.H.Elliot,Membrane phospholipid asymmetry in Bacillus amyloliquefaciens,J Bacteriol,135:393(1978)Google Scholar
  75. 75.
    J. Smit,Y. Kamid and H. Nikaido,Outer membrane of Salmonella typhimurium:chemical analysis and freeze-fracture studies with lipopolysaccharide mutants, J. Bacteriol., 124: 942 (1975).PubMedGoogle Scholar
  76. 76.
    H. Nikaido,Nonspecific transport through the outer membrane, in. Nikaido,Nonspecific transport through the outer membrane, in “Bacterial outer membrane. Biogenesis and functions”, M. Inouye,ed.,John Wiley & Sons,New York,pg. 361 (1979).Google Scholar
  77. 77.
    A. J. Wicken and K. W. Knox,Bacterial cell surface amphiphiles,Biochim. Biophys. Acta, 604: 1 (1980).CrossRefGoogle Scholar
  78. 78.
    K. W. Knox and A. J. Wicken,Immunological properties of teichoic acids,Bacteriol. Rev., 27: 215 (1973).Google Scholar
  79. 79.
    D. Van Driel,A. J. Wicken,M. R. Dickson and K. W. Knox, Cellular location of the lipoteichoic acids of Lactobacillus fermenti NCTC 6991 and Lactobacillus casei NCTC 6375,J. Ultrastr. Res.,43:483 (!973).Google Scholar
  80. 80.
    A. J. Wicken and K. W. Knox,Lipoteichoic acids:A new class of bacterial antigens,Science, 187: 1161 (1975).Google Scholar
  81. 81.
    G. D. Shockman,Cellular localization,excretion,and physiological roles of lipoteichoic acids in gram-positive bacteria,in. Shockman,Cellular localization,excretion,and physiological roles of lipoteichoic acids in gram-positive bacteria,in “Chemistry and biological activities of bacterial surface amphiphiles”,G. D. Shockman and A. J. Wicken,eds.,Acad. Press,New York,pg. 21 (1981).Google Scholar
  82. 82.
    G. D. Shockman and H. D. Slade, The cellular location of the streptococcal group D antigen, J. Gen. Microbiol., 37: 297 (1964).PubMedGoogle Scholar
  83. 83.
    A. M. Hughes,I. C. Hancock and J. Baddiley, The function of teichoic acids in cation control in bacterial membranes, Biochem. J., 132: 83 (1973).PubMedGoogle Scholar
  84. 84.
    W. Fischer, Glycerophosphoglycolipids presumptive biosynthetic precursors of lipoteichoic acids,in “Chemistry and biological activities of bacterial surface amphiphiles”, G. D. Shockman and A. J. Wicken,eds.,Acad. Press,New York pg. 209 (1981).Google Scholar
  85. 85.
    E. B. Briles and A. Tonasz,Pneumococcal Forssman antigen.A choline-containing lipoteichoic acid,J. Biol. Chem., 248: 6394 (1973).Google Scholar
  86. 86.
    P.Owen and M.R.J.Salton,A succinylated merman in the membrane system ofMicrococcus lysodeikticus,BB.Res.Cotmmun,63:875(1975)Google Scholar
  87. 87.
    A. M. Santana and M. T. Silva,Ultrastructure of the effects of detergents on bacterial cells. 4-Localization of polysaccharides in the envelope of Treponema pallidum Reun. An. Soc. Port. M. E.,abs 13M (1980).Google Scholar
  88. 88.
    M. S. Wachter and R. C. Johnson,Treponema outer envelope: chemical analysis,Proc. Soc. Exptl. Bio. Med., 151: 97 (1976).Google Scholar
  89. 89.
    L. Barksdale and K.-S. Kim,Mycobacterium,Bacteriol. Rev., 41: 217 (1977).Google Scholar
  90. 90.
    M. R. J. Salton and S.-H. Lim,Quantitative immunoelectrophoresis technique in studies of identification,purification and distribution of membrane lipomannan,in. Lim,Quantitative immunoelectrophoresis technique in studies of identification,purification and distribution of membrane lipomannan,in “Chemistry and biological activities of bacterial surface amphiphiles”,G. D. Shockman and A. J. Wicken,eds.,Acad. Press,New York,pg. 101 (1981).Google Scholar
  91. 91.
    E. L. Martin and R. A. MacLeod, Isolation and chemical composition of the cytoplasmic membrane of a gram-negative bacterium, J. Bacteriol., 105: 1160 (1971).PubMedGoogle Scholar
  92. 92.
    P. A. Lambert,I. C. Hancock and J. Baddiley,Occurrence and function of membrane teichoic acids,Biochim. Biophys. Acta, 472: 1 (1977).Google Scholar
  93. 93.
    D. Horne and A. Tomasz,Release of lipoteichoic acid from Streptococcus sanguis:stimulation of release during penicillin treatment, J. Bacteriol., 137: 1180 (1979).PubMedGoogle Scholar
  94. 94.
    W. Wong,G. D. Shockman and A. J. Wicken,Deplection of lipoteichoic acid from intact cells of Streptococcus faecium in. Wicken,Deplection of lipoteichoic acid from intact cells of Streptococcus faecium in “Chemistry and biological activities of bacterial surface amphiphiles”,G. D. Shockman and A. J. Wicken,eds., Acad. Press,New York,pg. 247 (1981).Google Scholar
  95. 95.
    H. R. Kaback,Bacterial membranes,in. Kaback,Bacterial membranes,in “Methods in Enzymology”, W. B. Jacobi,ed.,Acad. Press,New York,vol. XXII,pg. 89 (1971).Google Scholar
  96. 96.
    W. N. Konnings,A. Bisschop,M. Veenhuis and C. A. Venneulen, New procedure for the isolation of membrane vesicles of Bacillus subtilis and an electron microscopy study of their ultrastructure, J. Bacteriol, 116: 1456 (1973).Google Scholar
  97. 97.
    O. Luderitz,A. M. Staub and O. Westphal,Immunochonistry of O and R antigens of Salmonella and related Enterobactereaceae,Bacteriol. Rev., 30: 192 (1966).Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • M. T. Silva
    • 1
  1. 1.Centro de Citologia Experimental da Universidade do PortoPortoPortugal

Personalised recommendations