Advertisement

Molecular Studies of Mouse Chromosome 17 and the T Complex

  • Lee M. Silver
  • James I. Garrels
  • Hans Lehrach
Part of the Genetic Engineering book series (GEPM, volume 6)

Abstract

Much of the biological research conducted over the last 30 years has been directed toward the ultimate goal of understanding the “body human” in molecular terms. While a direct assault on the molecular biology of man was clearly not feasible prior to the age of recombinant DNA, earlier studies of simpler organisms provided a wealth of information on basic molecular principles that operated in human beings as well. Nevertheless, less complex organisms such as bacteria, yeast, or even Drosophila are not as useful to an understanding of human embryology, immunology, neurobiology, or cancer biology. While it is now possible to perform molecular studies directly on human-derived cell lines and tissues, the human body is still not amenable to analysis with the full range of genetic tools available to the contemporary biologist.

Keywords

Major Histocompatibility Complex Mouse Chromosome Wild Mouse Lethal Gene Germ Cell Differentiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nadeau, J. and Eicher, E. (1982) Cytogenet. Cell Genetics 34, 271–282.CrossRefGoogle Scholar
  2. 2.
    Garrels, J.I. (1983) Methods in Enzymology.Google Scholar
  3. 3.
    Silver, L.M. (1981) Cell 27, 239–240.PubMedCrossRefGoogle Scholar
  4. 4.
    Roderick, T.H. and Davisson, M.T. (1981) in Genetic Variants and Strains of the Laboratory Mouse (Green, M.C., ed.) pp. 279–282, Gustav Fisher Verlag, Stuttgart.Google Scholar
  5. 5.
    Kralova and Lengerova (1979) J. Immunogenetics 6, 429–438.CrossRefGoogle Scholar
  6. 6.
    Washburn, L.L. and Eicher, E. (1983) Nature 303, 338–340.PubMedCrossRefGoogle Scholar
  7. 7.
    Forejt, J. and Ivanyi, P. (1975) Genet. Res. 24, 189–206.CrossRefGoogle Scholar
  8. 8.
    Shedlovsky, A., Clipson, L.J., VandeBerg, J.L. and Dove, W.F. (1981) Immunogenetics 13, 413–419.PubMedCrossRefGoogle Scholar
  9. 9.
    Levine, A.J. and Teresky, A.K. (1981) Immunogenetics 13, 405–412.PubMedCrossRefGoogle Scholar
  10. 10.
    Winoto, A., Steinmetz, M. and Hood, L. (1983) Proc. Nat. Acad. Sci. U.S.A. 80, 3425–2429.Google Scholar
  11. 11.
    Lyon, M.F., Evans, E.P., Jarvis, S.E. and Sayers, I. (1979) Nature 279, 38–42.PubMedCrossRefGoogle Scholar
  12. 12.
    Lyon, M.F. and Mason, I. (1977) Genet. Res. 29, 255–266.CrossRefGoogle Scholar
  13. 13.
    Silver, L.M. and Artzt, K. (1981) Nature 290, 68–70.PubMedCrossRefGoogle Scholar
  14. 14.
    Bennett, D. (1975) Cell 6, 441–454.CrossRefGoogle Scholar
  15. 15.
    Artzt, K., McCormick, P. and Bennett, D. (1982) Cell 28, 463–470.PubMedCrossRefGoogle Scholar
  16. 16.
    Artzt, K. and Bennett, D. (1977) Immunogenetics 5, 91–107.Google Scholar
  17. 17.
    Sherman, M.I. and Wudl, L.R. (1977) in Concepts in Mammalian Embryogenesis (Sherman, M., ed.) pp. 136–234, MIT Press, Cambridge, MA.Google Scholar
  18. 18.
    Axelrod, H.R., Artzt, K. and Bennett, D. (1981) Devel. Biol. 73, 332.Google Scholar
  19. 19.
    Magnuson, T., Epstein, C.J., Silver, L.M. and Martin, G.R. (1982) Nature 298, 750–753.PubMedCrossRefGoogle Scholar
  20. 20.
    O’Farrell, P.H. and O’Farrell, P.Z. (1978) Methods Cell Biol. 16, 407–420.CrossRefGoogle Scholar
  21. 21.
    Silver, L.M., Uman, J., Danska, J. and Garrels, J.I. (1983) Cell.Google Scholar
  22. 22.
    Silver, L.M., Artzt, K. and Bennett, D. (1979) Cell 17, 275–284.PubMedCrossRefGoogle Scholar
  23. 23.
    Danska, J.S. and Silver, L.M. (1980) Cell 22, 901–904.PubMedCrossRefGoogle Scholar
  24. 24.
    Silver, L.M. and White, M. (1982) Devel. Biol. 91, 423–430.CrossRefGoogle Scholar
  25. 25.
    Klein, J., Figueroa, F. and Klein, D. (1982) Immunogenetics 16, 285–317.PubMedCrossRefGoogle Scholar
  26. 26.
    Silver, L.M. (1981) Genet. Res. 38, 115–123.PubMedCrossRefGoogle Scholar
  27. 27.
    Lyon, M.F. (1981) Symp. Zool. Soc. Lond. 47, 455–477.Google Scholar
  28. 28.
    Klein, J., Juretic, A., Baxevanis, C.N. and Nagy, Z.A. (1981) Nature 291, 455–460.PubMedCrossRefGoogle Scholar
  29. 29.
    Sturm, S., Figueroa, F. and Klein, J. (1982) Genet. Res. 40, 73–88.PubMedCrossRefGoogle Scholar
  30. 30.
    Artzt, K., Shin, H.-S. and Bennett, D. (1982) Cell 28, 471–476.PubMedCrossRefGoogle Scholar
  31. 31.
    Steinmetz, M., Winoto, A., Minard, K. and Hood, L. (1982) Cell 28, 489–498.PubMedCrossRefGoogle Scholar
  32. 32.
    Silver, L.M. (1982) Cell 29, 961–968.PubMedCrossRefGoogle Scholar
  33. 33.
    Shin, H.-S., Stavnezer, J., Artzt, K. and Bennett, D. (1982) Cell 29, 969–976.PubMedCrossRefGoogle Scholar
  34. 34.
    Rogers, J.H., and Willison, K.R. (1983) Nature 304, 549–552.PubMedCrossRefGoogle Scholar
  35. 35.
    Pirrotta, V., Jackie, H. and Edstrom, J.E. (1983) in Genetic Engineering (Setlow, J.K. and Hollaender, A., eds.), Vol. 5, pp. 1–17, Plenum Press, New York, NY.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Lee M. Silver
    • 1
  • James I. Garrels
    • 1
  • Hans Lehrach
    • 2
  1. 1.Cold Spring Harbor LaboratoryCold Spring HarborUSA
  2. 2.European Molecular Biology LaboratoryHeidelbergGermany

Personalised recommendations