Advertisement

Screening for and Characterizing Restriction Endonucleases

  • Ira Schildkraut
Part of the Genetic Engineering book series (GEPM, volume 6)

Abstract

The ability to cleave DNA at specific sequences is the fundamental technology which was responsible for the rapid development of genetic engineering. The type II restriction endonucleases are the enzymes which enable scientists to cleave DNA at specific sequences. In 1974, Richard Roberts distributed a list of 30 restriction endonucleases. Eighteen of these recognized unique sequences; the remainder were isoschizomers, enzymes from different bacterial sources that recognize the same sequence (1). Presently the list contains 398 restriction endonucleases, 91 of which are unique (2). The increased number of restriction endonucleases available now has allowed greater flexibility and versatility in experimental strategies and design. Continuing the search for and identifying new restriction endonucleases will further reduce the limitations and permit more precision in genetic engineering.

Keywords

Restriction Endonuclease Crude Extract Recognition Sequence Palindromic Sequence Terminal Nucleotide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Roberts, R.J. (1976) CRC Crit. Rev. Biochem. 4, 123–164.PubMedCrossRefGoogle Scholar
  2. 2.
    Roberts, R.J. (1983) Nucl. Acids Res. 11, r135 - r167.PubMedCrossRefGoogle Scholar
  3. 3.
    Lacks, S. and Greedberg, B. (1977) J. Mol. Biol. 114, 153–168.PubMedCrossRefGoogle Scholar
  4. 4.
    Walder, R.Y., Langtimm, C.J., Chatterjee, R. and Walder, J.A. (1983) J. Biol. Chem. 258, 1235–1241.PubMedGoogle Scholar
  5. 5.
    Waalwijk, C. and Flavell, R.A. (1978) Nucl. Acids Res. 5, 4631–4641.PubMedCrossRefGoogle Scholar
  6. 6.
    Shen, S., Li, Q., Yan. P., Zhou, B., Ye, S., Lu, Y. and Wang, D. (1980) Sci. Sin. 23, 1435–1442.PubMedGoogle Scholar
  7. 7.
    Messing, J. (1982) in Genetic Engineering (Setlow, J.K. and Hollaender, A., eds.), Vol. 4, pp. 19–35, Plenum Press, New York, NY.Google Scholar
  8. 8.
    Fuchs, C., Rosenvold, E.C., Honigman, A., and Szybalski, W. (1980) Gene 10, 357–370.PubMedCrossRefGoogle Scholar
  9. 9.
    Modrich, P. and Roberts, R.J. in Nucleases (Linn, S.M. and Roberts, R.J., eds.) pp. 109–154, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  10. 10.
    Daniels, D.L., Schroeder, J.L., Blattner, F.R., Szybalski, W. and Sanger, F. (1983) in Lambda-II (Hendrix, R.W., Roberts, J.W., Stahl, F.W. and Weisberg, R.A., eds.) Appendix, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  11. 11.
    Dunn, J.J. and Studier, F.W. (1983) J. Mol. Biol. 166, 477–536.PubMedCrossRefGoogle Scholar
  12. 12.
    Van Wezenbeck, P.M.G.F., Hulsebos, T.J.M. and Schoenmakers, J.G.G. (1980) Gene 11, 129–148.CrossRefGoogle Scholar
  13. 13.
    Sanger, F., Coulson, A.R., Friedmann, T., Air, G.M., Barrell, B.G., Brown, N.L., Fiddes, J.C., Hutchison, C.A. III., Slocombe, P.M. and Smith, M. (1978) J. Mol. Biol. 125, 225–246.PubMedCrossRefGoogle Scholar
  14. 14.
    Sutcliffe, J.G. (1978) Cold Spring Harbor Symp. Quant. Biol. 43, 77–90.Google Scholar
  15. 15.
    Reddy, V.B., Thimmappaya, B., Dhar, R., Subramanian, K.N., Zain, S., Pan, J., Ghosh, P.K., Celma, M.L. and Weissman, S.M. (1978) Science 200, 494–502.PubMedCrossRefGoogle Scholar
  16. 16.
    Sharp, P.A., Sugden, B. and Sambrook, J. (1973) Biochem. 12, 3055–3063.CrossRefGoogle Scholar
  17. 17.
    Schleif, R. (1980) in Methods in Enzymology (Grossman, L. and Moldave, K., eds.), Vol. 65, pp. 19–23, Academic Press, New York, NY.Google Scholar
  18. 18.
    Smith, H.O., and Wilcox, K.W. (1970) J. Mol. Biol. 51, 379–391.PubMedCrossRefGoogle Scholar
  19. 19.
    Rushisky, G.W. (1981) in Gene Amplification and Analysis (Chirikjian, J.G., ed.), Vol. 1, pp. 234–242, Elsevier/North Holland, New York, NY.Google Scholar
  20. 20.
    Bickle, T.A., Pirotta, V. and Imber, T. (1977) Nucl. Acids Res. 4, 2561–2572.PubMedCrossRefGoogle Scholar
  21. 21.
    Smith, H.O. and Nathans, D.J. (1973) J. Mol. Biol. 81, 419–423.PubMedCrossRefGoogle Scholar
  22. 22.
    Bachman, K. (9180) Gene 11, 167–171.Google Scholar
  23. 23.
    Thomas, M. and Davis, R.W. (1975) J. Mol. Biol. 91, 315–328.PubMedCrossRefGoogle Scholar
  24. 24.
    Forsblum, S., Rigler, R., Ehrenberg, M., Pettersson, U. and Philipson, L. (1976) Nucl. Acids Res. 3, 3255–3269.CrossRefGoogle Scholar
  25. 25.
    Nath, K. and Azzolina, B.A. (1981) in Gene Amplification and Analysis (Chirikjian, J.G., ed.), Vol. 1, pp. 113–130, Elsevier North/Holland, New York, NY.Google Scholar
  26. 26.
    Brown, N.L. and Smith, M. (1977) Proc. Nat. Acad. Sci. U.S.A. 74, 3213–3216.PubMedCrossRefGoogle Scholar
  27. 27.
    Gingeras, T.R. and Brooks, J.E. (1983) Proc. Nat. Acad. Sci. U.S.A. 80, 402–406.PubMedCrossRefGoogle Scholar
  28. 28.
    Tolstoshev, C.M. and Blakesley, R.W. (1982) Nucl. Acids Res. 10, 1–17.PubMedCrossRefGoogle Scholar
  29. 29.
    Gingeras, T.R., Milazzo, J.P. and Roberts, R.J. (1978) Nucl. Acids Res. 5, 4105–4127.PubMedCrossRefGoogle Scholar
  30. 30.
    Kelley, T.J. and Smith, H.O. (1970) J. Mol. Biol. 51, 393–409.CrossRefGoogle Scholar
  31. 31.
    Murray, K. (1973) Biochem. J. 131, 569–579.PubMedGoogle Scholar
  32. 32.
    Tu, C.D., Jay, E., Dahl, C.P. and Wu, R. (1976) Anal. Biochem. 74, 73–93.PubMedCrossRefGoogle Scholar
  33. 33.
    Maxam, A.M. and Gilbert, W. (1980) in Methods in Enzymology (Grossman, L. and Moldave, K., eds.), Vol. 65, pp. 499–560.Google Scholar
  34. 34.
    Roychoudury, R. and Kossel, H. (1971) Eur. J. Biochem. 22, 310–320.CrossRefGoogle Scholar
  35. 35.
    Roychoudury, R. (1981) in Gene Amplification and Analysis (Chirikjian, J.G., ed.), Vol. 1, pp. 41–83, Elsevier North/Holland New York, NY.Google Scholar
  36. 36.
    Brown, N.L., Hutchison, C.A. and Smith, M. (1980) J. Mol. Biol. 140, 143–148.PubMedCrossRefGoogle Scholar
  37. 37.
    Gingeras, T.R., Greenough, L., Schildkraut, I. and Roberts, R.J. (1981) Nucl. Acids Res. 9, 4525–4536.PubMedCrossRefGoogle Scholar
  38. 38.
    Watson, R.J., Schildkraut, I., Qiang, B.-Q., Martin, S.M. and Visentin, L.P. (1982) FEBS Letters 150, 114–116.PubMedCrossRefGoogle Scholar
  39. 39.
    Sanger, F., Nicklen, S. and Coulson, A.R. (1977) Proc. Nat. Acad. Sci U.S.A. 74, 5463–5467.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Ira Schildkraut
    • 1
  1. 1.New England Biolabs, Inc.BeverlyUSA

Personalised recommendations