Vectors for Expressing Open Reading Frame DNA in Escherichia Coli Using lacZ Gene Fusions

  • George M. Weinstock
Part of the Genetic Engineering book series (GEPM, volume 6)


One of the important advances of genetic engineering is the ability to express cloned DNA segments in a surrogate host such as Escherichia coli. To accomplish this heterologous gene expression, bacterial initiation signals for transcription and translation must be spliced to the foreign coding sequence to create gene fusions. To produce a complete protein, the fusion joint must be at the start of the foreign gene. This requires precise splicing and can involve considerable effort. A simpler approach, requiring less precision, is to create the fusion joint somewhere within the target gene. In this case a hybrid protein is made containing a bacterial peptide at its N terminus joined to the C-terminal portion of the foreign polypeptide. Although such hybrid proteins do not in general retain the activity of the foreign protein, they can nevertheless be valuable when the normal protein is not required. Hybrid proteins are a source of the foreign antigen that can be used to produce antibodies for research, for applications such as the identification of gene products, or as diagnostics in medicine. In addition, although hybrid proteins are not usually active biochemically, there are numerous examples of hybrids that exhibit some activities of the complete protein. Thus, hybrid proteins can also be useful biochemical reagents.


Translation Initiation Translation Start Site Hybrid Protein Initiator Region Open Reading Frame Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bassford, P., Beckwith, J., Berman, M., Brickman, E., Casadaban, M., Guarente, L., Saint-Girons, I., Sarthy, A., Schwartz, M., Shuman, H. and Silhavy, T. (1978) in The Operon (Miller, J.H. and Reznikoff, W.S., eds.) pp. 245–261, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  2. 2.
    Weinstock, G.M., Berman, M.L., and Silhavy, T.J. (1983) in Gene Amplification and Analysis (Papas, T.S., Rosenberg, M. and Chirikjian, J.G., eds.) Vol. 3, pp. 27–64, Elsevier Press, New York, NY.Google Scholar
  3. 3.
    Miller, J.H. (1972) Experiments in Molecular Genetics, Cold Spring Harbor Laboratoty, Cold Spring Harbor, NY.Google Scholar
  4. 4.
    Koenen, M., Wither, U. and MUller-Hill, B. (1982) EMBO J. 1, 509–512.PubMedGoogle Scholar
  5. 5.
    Zabeau, M. and Stanley, K.K. (1982) EMBO J. 1, 1217–1224.PubMedGoogle Scholar
  6. 6.
    Gray, M.R., Colot, H.V., Guarente, L., and Rosbash, M. (1982) Proc. Nat. Acad. Sci. U.S.A. 79, 6598–6602.CrossRefGoogle Scholar
  7. 7.
    Shultz, J., Silhavy, T.J., Berman, M.L., Fiil, N. and Emr, S.D. (1982) Cell 31, 227–235.PubMedCrossRefGoogle Scholar
  8. 8.
    Weinstock, G.M., ap Rhys, C., Berman, M.L., Hampar, B., Jackson, D., Silhavy, T.J., Weisemann, J. and Zweig, M. (1983) Proc. Nat. Acad. Sci. U.S.A. 80, 4432–4436.CrossRefGoogle Scholar
  9. 9.
    Stanley, K.K. (1983) Nucleic Acids Res. 11, 4077–4092.PubMedCrossRefGoogle Scholar
  10. 10.
    Guarente, L., Lauer, G., Roberts, T.M. and Ptashne, M. (1980) Cell 20, 543–553.PubMedCrossRefGoogle Scholar
  11. 11.
    Hall, M.N. and Silhavy, T.J. (1981) J. Mol. Biol. 146, 23–43.PubMedCrossRefGoogle Scholar
  12. 12.
    Deininger, P.L. (1983) Anal. Biochem. 129, 216–223.PubMedCrossRefGoogle Scholar
  13. 13.
    Anderson, S. (1981) Nucleic Acids Res. 9, 3105–3027.CrossRefGoogle Scholar
  14. 14.
    Rüther, U., Koenen, M., Sippel, A.E. and Müller-Hill, B. (1982) Proc. Nat. Acad. Sci. U.S.A. 79, 6852–6855.CrossRefGoogle Scholar
  15. 15.
    Shine, J. and Dalgarno, L. (1974) Proc. Nat. Acad. Sci. U.S.A. 71, 1342–1346.CrossRefGoogle Scholar
  16. 16.
    Stormo, G.D., Schneider, T.D. and Gold, L.M. (1982) Nucleic Acids Res. 10, 2971–2996.Google Scholar
  17. 17.
    Ptashne, M. (1978) in The Operon (Miller, J.H. and Reznikoff, W.S., eds.) pp. 325–343, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  18. 18.
    Broome, S. and Gilbert, W. (1978) Proc. Nat. Acad. Sci. U.S.A. 75, 2746–2749.CrossRefGoogle Scholar
  19. 19.
    Hall, M.N., and Silhavy, T.J. (1981) Annu. Rev. Genet. 15, 91–142.PubMedCrossRefGoogle Scholar
  20. 20.
    Grunstein, M. and Hogness, D.S. (1975) Proc. Nat. Acad. Sci. U.S.A. 72, 3961–3965.CrossRefGoogle Scholar
  21. 21.
    Towbin, H., Staehelin, T. and Gordon, J. (1979) Proc Nat. Acad. Sci. U.S.A. 76, 4350–4354.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • George M. Weinstock
    • 1
  1. 1.Laboratory of Genetics and Recombinant DNA LBI-Basic Research ProgramNCI-Frederick Cancer Research FacilityFrederickUSA

Personalised recommendations