Transformation in the Green Alga Chlamydomonas Reinhardii

  • J.-D. Rochaix
Part of the Genetic Engineering book series (GEPM, volume 6)


The green unicellular alga Chlamydomonas reinhardii appears to be a useful model system for studying basic events in eukaryotic cells such as chloroplast biogenesis, chloroplast­nucleocytoplasmic interactions, flagellar biosynthesis, photo-taxis and cell cycle regulation. Because of its small size, C. reinhardii can be manipulated with the same ease as prokaroytic organisms, an important feature for physiological and genetic studies. Cells of opposite mating type can propagate vegetatively by successive mitosis. When vegetative cells are transferred into a medium lacking reduced nitrogen, they differentiate into gametes. Gametes of opposite mating type fuse to form zygotes which undergo meiosis and release four daughter cells. An important feature is that shortly after zygote formation, the two parental chloroplasts fuse.


Inverted Repeat Chloroplast Genome Replication Origin EcoRI Fragment HindIII Fragment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Levine, R.P. and Goodenough, U.W. (1970) Ann. Rev. Genet. 4, 397–408.PubMedCrossRefGoogle Scholar
  2. 2.
    Genetic Maps (1982), Vol. 2, pp. 168–174 ( O’Brien, S.J., ed.) National Cancer Institute, NIH, Frederick, MD.Google Scholar
  3. 3.
    Sueoka, N., Chiang, K.S. and Kates, J.R. (1967) J. Mol. Biol. 25, 47–66.PubMedCrossRefGoogle Scholar
  4. 4.
    Wells, R. and Sager, R. (1971) J. Mol. Biol. 58, 611–622.PubMedCrossRefGoogle Scholar
  5. 5.
    Howell, S.H. and Walker, L.L. (1976) Biochim. Biophys. Acta 418, 249–256.PubMedCrossRefGoogle Scholar
  6. 6.
    Rochaix, J.-D. (1978) J. Mol. Biol. 126, 597–617.CrossRefGoogle Scholar
  7. 7.
    Grant, D.M. and Chiang, K.S. (1980) Plasmid 4, 82–96.PubMedCrossRefGoogle Scholar
  8. 8.
    Gillham, N.W. (1978) Organelle Heredity, Raven Press, New York.Google Scholar
  9. 9.
    Sager, R. (1977) Advanc. Genet. 19, 297–340.Google Scholar
  10. 10.
    Gillham, N.W. (1965) Genetics 52, 529–537.PubMedGoogle Scholar
  11. 11.
    Loppes, R., Matagne, R.F. and Strijkert, P.J. (1972) Heredity 28, 239–251.CrossRefGoogle Scholar
  12. 12.
    Loppes, R. and Matagne, R.F. (1972) Genetica 43, 422–430.CrossRefGoogle Scholar
  13. 13.
    Strijkert, P.J. and Sussenbach, J.S. (1969) Eur. J. Biochem. 8, 408–412.PubMedCrossRefGoogle Scholar
  14. 14.
    Matagne, R.F. and Schlbsser, J.P. (1977) Biochem. J. 167, 71–75.PubMedGoogle Scholar
  15. 15.
    Davies, D.R. and Plaskitt, A. (1971) Genet. Res. 17, 33–43.CrossRefGoogle Scholar
  16. 16.
    Clarke, L. and Carbon, J. (1978) J. Mol. Biol. 120, 517–532.PubMedCrossRefGoogle Scholar
  17. 17.
    Hsiao, C.L. and Carbon, J. (1979), Proc. Nat. Acad. Sci. U.S.A., 76, 3829–3833.CrossRefGoogle Scholar
  18. 18.
    Rochaix, J.-D. and van Dillewijn, J. (1982) Nature 296, 70–72.PubMedCrossRefGoogle Scholar
  19. 19.
    Zakian, V. (1981) Proc. Nat. Acad. Sci. U.S.A. 78, 3129–3132.CrossRefGoogle Scholar
  20. 20.
    Rochaix, J.-D., Dron, M., Rahire, M., Boissel, J.-M. and van Dillewijn, J. (1983) in Structure and Function of Plant Genomes (Ciferri, O., ed.) pp. 205–212, Plenum Press, New York, NY.CrossRefGoogle Scholar
  21. 21.
    Malnoe, P.M. and Rochaix, J.-D. (1979) Mol. Gen. Genet. 166, 269–275.Google Scholar
  22. 22.
    Malnoe, P.M., Rochaix, J.-D., Chua, N.H. and Spahr, P.-F. (1979) J. Mol. Biol. 133, 417–434.PubMedCrossRefGoogle Scholar
  23. 23.
    Watson, J.C. and Surzycki, S.J. (1982) Proc. Nat. Acad. Sci. U.S.A. 79, 2264–2267.CrossRefGoogle Scholar
  24. 24.
    Watson, J.C. and Surzycki, S.J. (1983) Current Genet.Google Scholar
  25. 25.
    Bernardi, G. (1982) TIBS 7, 404–408.Google Scholar
  26. 26.
    Crews, S, Ojala, D. Posakony, J., Nishiguchi, J. and Attardi, G. (1979) Nature 277, 192–198.PubMedCrossRefGoogle Scholar
  27. 27.
    Tschumper, G. and Carbon, J. (1982) J. Mol. Biol. 156, 293–307.Google Scholar
  28. 28.
    Zakian, V. and Kupfer, D.M. (1982) Plasmid 8, 15–28.PubMedCrossRefGoogle Scholar
  29. 29.
    Wu, M. and Waddell, J.M. (1983) J. Cell, Biochem., Suppl. 7B 286.Google Scholar
  30. 30.
    Blanc, H. and Dujon, B. (1981) in Mitochondrial Genes (Slonimski, P.P., Borst, P. and Attardi, G., eds.) Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  31. 31.
    Hyman, B.C., Cramer, J.H. and Rownd, R.H. (1982) Proc. Nat. Acad. Sci. U.S.A. 79, 1578–1582.Google Scholar
  32. 32.
    Stahl, U., Tudzynski, P., Kick, U. and Esser, K. (1982) Proc. Nat. Acad. Sci. U.S.A. 79, 3641–3645.Google Scholar
  33. 33.
    Sager, R. (1954) Proc. Nat. Acad. Sci. U.S.A. 40, 356–363.CrossRefGoogle Scholar
  34. 34.
    Dron, M., Rahire, M., Rochaix, J.-D. and Mets, L. (1983) Plasmid 9, 321–324.PubMedCrossRefGoogle Scholar
  35. 35.
    Erickson, J., Schneider, M., Vallet, J.-M., Dron, M., Bennoun, P. and Rochaix, J.-D. (1983) in Proceedings 6th Intl. Congress on Photosynthesis.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • J.-D. Rochaix
    • 1
  1. 1.Departments of Molecular Biology and Plant BiologyUniversity of GenevaGeneva 4Switzerland

Personalised recommendations