Advertisement

Analysis of Eukaryotic Control Proteins at Their Recognition Sequences by Scanning Transmission Electron Microscopy

  • Paul V. C. Hough
  • Martha N. Simon
  • Iris A. Mastrangelo
Part of the Genetic Engineering book series (GEPM, volume 6)

Abstract

The capability of Scanning Transmission Electron Microscopy (STEM) for measurement of macromolecular mass and mass distribution (1–3) and the recent discovery of in vitro systems for eukaryotic transcription (4–7) have led us to explore the characterization of control proteins and initiation complexes by quantitative electron microscopy in the neighborhood of promoters and other important DNA sequences. Cloned individual genes and control sequences are used. This approach is feasible because of the adhesion and spreading of DNA fragments on thin carbon foil which results from activation of the foil by electrical discharge in pure N2 (8). A significant additional advantage of such preparations has proved to be the ability to determine position on unstained, unshadowed DNA to within a few base pairs (bp) (see below).

Keywords

Scan Transmission Electron Microscopy Palette Color Helix Axis Scan Transmission Electron Microscopy Image Picture Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wall, J.S. (1979) in Introduction to Analytical Electron Microscopy (Hren, J.J., Goldstein, J.I. and Joy, J.I., eds.), pp. 333–342, Plenum Press, New York, NY.Google Scholar
  2. 2.
    Wall, J.S. (1979) Scanning Electron Microscopy, Vol. II, pp. 291–303, Illinois Institute of Technology, Chicago, IL.Google Scholar
  3. 3.
    Engel, A. (1978) Ultramicros. 3, 273–281.CrossRefGoogle Scholar
  4. 4.
    Wu, G.J. (1978) Proc. Nat. Acad. Sci. U.S.A. 75, 2175–2179.Google Scholar
  5. 5.
    Weil, P.A., Segall, J., Harris, B., Ng, S.-Y. and Roeder, R. G. (1979) J. Biol. Chem. 254, 6163–6173.PubMedGoogle Scholar
  6. 6.
    Weil, P.A., Luse, D.S., Segall, J. and Roeder, R.G. (1979) Cell 18, 469–484.PubMedCrossRefGoogle Scholar
  7. 7.
    Manley, J.L., Fire, A., Cano, A., Sharp, P.A. and Gefter, M.L. (1980) Proc. Nat. Acad. Sci. U.S.A. 77, 3855–3859.PubMedCrossRefGoogle Scholar
  8. 8.
    Hough, P.V.C., Mastrangelo, I.A., Wall, J.S., Hainfeld, J.F., Simon, M.N. and Manley, J.L. (1982) J. Mol. Biol. 160, 375–386.PubMedCrossRefGoogle Scholar
  9. 9.
    Mastrangelo, I.A., Wilson, V.G., Wall, J.S., Hainfeld, J.F., Hough, P.V.C. and Tegtmeyer, P. (1984) submitted.Google Scholar
  10. 10.
    Simon, M., Dignam, D., Mastrangelo, I., Hainfeld, J., Wall, J., Roeder, R. and Hough, P. (1983) J. Cell. Biochem., Supplement 7A (Fox, C.F., ed.), P. 104, Alan R. Liss, Inc., New York, NY.Google Scholar
  11. 11.
    Studier, F.W. (1965) J. Mol. Biol. 11, 373–390.PubMedCrossRefGoogle Scholar
  12. 12.
    Svedberg, T. and Pederson, K.O. (1940) The Ultracentrifuge, pp. 5–6, Oxford.Google Scholar
  13. 13.
    Gilbert, W. and Muller-Hill, B. (1967) Proc. Nat. Acad. Sci. U.S.A. 58, 2415–2418.PubMedCrossRefGoogle Scholar
  14. 14.
    Riggs, A.D., Suzuki, H. and Bourgeois, S. (1970) J. Mol. Biol. 48, 67–83.PubMedCrossRefGoogle Scholar
  15. 15.
    Riggs, A.D., Bourgeois, S. and Cohn, M. (1970) J. Mol. Biol. 53, 401–417.PubMedCrossRefGoogle Scholar
  16. 16.
    Chadwick, P., Pirrotta, V., Steinberg, R., Hopkins, N. and Ptashne, M. (1970) Cold Sring Harbor Symp. Quant. Biol. 35, 283–294.CrossRefGoogle Scholar
  17. 17.
    Alberty, R.A. and Hammes, G.G. (1958) J. Phys. Chem. 62, 154–159.CrossRefGoogle Scholar
  18. 18.
    Berg, O.G., Winter, R.B. and von Hippel, P.H. (1981) Biochemistry 20, 6929–6948.PubMedCrossRefGoogle Scholar
  19. 19.
    Winter, R.B. and von Hippel, P.H. (1981) Biochemistry 20, 6948–6960.PubMedCrossRefGoogle Scholar
  20. 20.
    Winter, R.B., Berg, O.G. and von Hippel, P.H. (1981) Biochemistry 20, 6961–6977.PubMedCrossRefGoogle Scholar
  21. 21.
    McKay, R.D.G. (1981) J. Mol. Biol. 145, 471–488.CrossRefGoogle Scholar
  22. 22.
    Miller, J.H. and Reznikoff, W.S., eds. (1978) The Operon, Cold Spring Harbor Laboratory, NY.Google Scholar
  23. 23.
    von Hippel, P.H., Bear, D.G., Winter, R.B. and Berg, O.G. (1981) Symposium on Promoters: Structure and Function, May 18–20, Monterey, CA.Google Scholar
  24. 24.
    De Meyts, P. (1976) Methods Mol. Biol. 9, 301–373.Google Scholar
  25. 25.
    Kadesch, T.R., Williams, R.C. and Chamberlin, M.J. (1980) J. Mol. Biol. 136, 65–93.PubMedCrossRefGoogle Scholar
  26. 26.
    Mosesson, M.W., Hainfeld, J., Wall, J. and Haschemeyer, R. (1981) J. Mol. Biol. 153, 695–718.PubMedCrossRefGoogle Scholar
  27. 27.
    Klug, A. and Berger, J.E. (1964) J. Mol. Biol. 10, 565–569.PubMedCrossRefGoogle Scholar
  28. 28.
    Henderson, R. (1975) J. Mol. Biol. 93, 123–138.PubMedCrossRefGoogle Scholar
  29. 29.
    Amos, L.A., Henderson, R. and Unwin, P.N.T. (1982) Prog. Biophys. Molec. Biol. 39, 183–231.CrossRefGoogle Scholar
  30. 30.
    Cohen, N.D., Duc, J.A., Beegen, H. and Utter, M.F. (1979) J. Biol. Chem. 254, 9262–9269.PubMedGoogle Scholar
  31. 31.
    Wall, J.S., Hainfeld, J.F., Bartlett, P.A. and Singer, S.J. (1982) Ultramicros. 8, 397–402, Figure 2d.Google Scholar
  32. 32.
    Frank, J. (1973) in Advanced Techniques in Biological Electron Microscopy (J.K. Koehler, ed.), pp. 215–274, Springer, Berlin.CrossRefGoogle Scholar
  33. 33.
    Ten Eyck, L. (1982) MRC Cambridge computer programs for image analysis.Google Scholar
  34. 34.
    Saxton, W.O. (1978) Computer Techniques for Image Processing in Electron Microscopy, pp. 189–191, Academic Press, New York, NY.Google Scholar
  35. 35.
    Wall, J.S. (1979) Chemica Scripta 14, 271–278.Google Scholar
  36. 36.
    DISSPLA, version 9.0 (1981) Integrated Software Systems Corporation, San Diego, CA 92121.Google Scholar
  37. 37.
    Kim, H.H., Hart, W.D. and van der Piepen, H. (1982) Science 218, 1027–1030, Figure 7.Google Scholar
  38. 38.
    Crewe, A.V. (1983) Science 221, 325–330, cover.Google Scholar
  39. 39.
    Isaacson, M., Utlaut, M. and Kopf, D. (1973) in Advanced Techniques in Biological Electron Microscopy (J.K. Koehler, ed.), pp. 257–283, Springer, Berlin.Google Scholar
  40. 40.
    Information International, Inc., Culver City, CA 90230.Google Scholar
  41. 41.
    Meyer, G.W. and Greenberg, D.P. (1980) Computer Graphics 14, 254–261.CrossRefGoogle Scholar
  42. 42.
    Drew, H.R., Wing, R.M., Takano, T., Broka, C., Tanaka, S., Itakura, K. and Dickerson, R.E. (1981) Proc. Nat. Acad. Sci. U.S.A. 78, 2179–2183.PubMedCrossRefGoogle Scholar
  43. 43.
    Langmore, J.P., Wall, J. and Isaacson, M.S. (1973) Optik 38, 335–350, Fig. 3.Google Scholar
  44. 44.
    Johnson, K.A. and Wall, J.S. (1983) J. Cell Biol. 96, 669–678.PubMedCrossRefGoogle Scholar
  45. 45.
    Steven, A.C., Wall, J., Hainfeld, J. and Steinert, P.M. (1982) Proc. Nat. Acad. Sci. U.S.A. 79, 3101–3105.PubMedCrossRefGoogle Scholar
  46. 46.
    Woodcock, C.L.F., Frado, L.L.Y. and Wall, J.S. (1980) Proc. Nat. Acad. Sci. U.S.A. 77, 4818–4822.PubMedCrossRefGoogle Scholar
  47. 47.
    DiCapua, E., Engle, A., Stasíak, A. and Koller, Th. (1982) J. Mol. Biol. 157, 87–103.CrossRefGoogle Scholar
  48. 48.
    Merck Index, 9th Ed. A.T. base pair, potassium counter-ion, 695 daltons; G.C., 694.Google Scholar
  49. 49.
    Tjian, R. (1978) Cell 13, 165–179.PubMedCrossRefGoogle Scholar
  50. 50.
    Myers, R.M., Rio, D.C., Robbins, A.K. and Tjian, R. (1981) Cell 25, 373–384.PubMedCrossRefGoogle Scholar
  51. 51.
    Hansen, U., Tenen, D.G., Livingston, D.M. and Sharp, P.A. (1981) Cell 27, 603–612.PubMedCrossRefGoogle Scholar
  52. 52.
    Shortle, D.R., Margolskee, R.F. and Nathans, D. (1979) Proc. Nat. Acad. Sci. U.S.A. 76, 6128–6131.PubMedCrossRefGoogle Scholar
  53. 53.
    Wilson, V.G., Tevethia, M.J., Lewton, B.A. and Tegtmeyer, P. (1982) Virology 44, 458–466.Google Scholar
  54. 54.
    Benoist, C. and Chambon, P. (1981) Nature 290, 304–310.PubMedCrossRefGoogle Scholar
  55. 55.
    Fromm, M. and Berg, P. (1982) J. Mol. Appl. Genet. 1, 457–481.PubMedGoogle Scholar
  56. 56.
    DeLucia, A., Lewton, B.A., Tjian, R. and Tegtmeyer, P. (1983) J. Virol. 46, 143–150.PubMedGoogle Scholar
  57. 57.
    Tegtmeyer, P., Lewton, B.A., DeLucia, A., Wilson, V.G. and Ryder, K. (1983) J. Virol. 46, 151–161.PubMedGoogle Scholar
  58. 58.
    Bradley, M.K., Griffin, J.D. and Livingston, D.M. (1982) Cell 28, 125–134.PubMedCrossRefGoogle Scholar
  59. 59.
    Myers, R.M., Williams, R.C. and Tjian, R. (1981) J. Mol. Biol. 148, 347–353.PubMedCrossRefGoogle Scholar
  60. 60.
    Gidoni, D., Scheller, B., Hantzopoulos, P., Oren, M. and Prives, C. (1982) J. Virol. 42, 456–466.PubMedGoogle Scholar
  61. 61.
    Fanning, E., Westphal, D.-H., Brauer, D. and Corlin, D. (1982) EMBO Jour. 1, 1023–1028.Google Scholar
  62. 62.
    Buchman, A.R., Burnett, L. and Berg, P. (1980) in DNA Turner Viruses (J. Tooze, ed.), p. 818, Cold Spring Harbor Laboratory, NY.Google Scholar
  63. 63.
    Sakonju, S., Brown, D.D., Engelke, D.R., Ng, S.-Y., Shastry, B.S. and Roeder, R.G. (1981) Cell 23, 665–669.PubMedCrossRefGoogle Scholar
  64. 64.
    Sakonju, S. and Brown, D.D. (1982) Cell 31, 395–405.PubMedCrossRefGoogle Scholar
  65. 65.
    Hanas, J.S., Bogenhagen, D.F. and Wu, C.-W. (1983) Proc. Nat. Acad. Sci. U.S.A. 80, 2142–2145.PubMedCrossRefGoogle Scholar
  66. 66.
    Peterson, R.C., Doering, J.L. and Brown, D.D. (1980) Cell 20, 131–141.PubMedCrossRefGoogle Scholar
  67. 67.
    Pelham, H.R.B. and Brown, D.D. (1980) Proc. Nat. Acad. Sci. U.S.A. 77, 4170–4174.PubMedCrossRefGoogle Scholar
  68. 68.
    Engelke, D.R., Ng, S.-Y., Shastry, B.S. and Roeder, R.G. (1980) Cell 19, 717–728.PubMedCrossRefGoogle Scholar
  69. 69.
    Matsui, T., Segall, J., Weil, P.A. and Roeder, R.G. (1980) J. Biol. Chem. 255, 11992–11996.PubMedGoogle Scholar
  70. 70.
    Ziff, E.B. (1980) Nature 287, 491–499.PubMedCrossRefGoogle Scholar
  71. 71.
    Hirsh, J. and Schleif, R. (1976) J. Mol. Biol. 108, 471–490.PubMedCrossRefGoogle Scholar
  72. 72.
    Goldberg, M. (1979) Thesis, Stanford University, unpublished.Google Scholar
  73. 73.
    Benoist, C., O’Hare, K., Breathnach, R. and Chambon, P. (1980) Nucl. Acids Res. 8, 127–142.PubMedCrossRefGoogle Scholar
  74. 74.
    Dierks, P., van Ooyen, A., Cochran, M.D., Dobkin, C., Reiser, J. and Weissmann, C. (1983) Cell 32, 695–706.PubMedCrossRefGoogle Scholar
  75. 75.
    McKnight, S.L. and Kingsbury, R. (1982) Science 217, 316–325.PubMedCrossRefGoogle Scholar
  76. 76.
    McKnight, S.L. (1982) Cell 31, 355–365.PubMedCrossRefGoogle Scholar
  77. 77.
    Arnott, S., Chandrasekaran, R., Birdsall, D.L., Leslie, A.G.W. and Ratliff, R.L. (1980) Nature 283, 743–745, Table 1 and references in footnote 2.Google Scholar
  78. 78.
    Ref. 34, Ch. 2 and Sec. 9.3.Google Scholar
  79. 79.
    Bracewell, R. (1965) The Fourier Transform and Its Application, Ch. 2, McGraw-Hill, New York, NY.Google Scholar
  80. 80.
    Ref. 77, Table 1 and references in footnote 1.Google Scholar
  81. 81.
    Engel, A, Baumeister, W. and Saxton, W.O. (1982) Proc. Nat. Acad. Sci. U.S.A. 79, 4050–4054.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Paul V. C. Hough
    • 1
  • Martha N. Simon
    • 1
  • Iris A. Mastrangelo
    • 2
  1. 1.Biology DepartmentBrookhaven National LaboratoryUptonUSA
  2. 2.Microbiology DepartmentState University of New YorkStony BrookUSA

Personalised recommendations