Advertisement

Genetic Analysis of Cytoskeletal Protein Function in Yeast

  • Peter Novick
  • James H. Thomas
  • David Botstein
Part of the Genetic Engineering book series (GEPM, volume 6)

Abstract

It has become clear in recent years that eukaryotic cells have an internal structure, called the cytoskeleton, which is of basic importance in many, if not all, cellular functions. Many of the major proteinaceous elements of the cytoskeleton have been identified, often with characteristic morphological structures (e.g., microfilaments, intermediate filaments, microtubules). However, the function of these proteins and structures is frequently unclear and sometimes entirely obscure. One way, in principle, that one can associate a protein or structure with a function is to obtain mutations in the gene(s) specifying the protein(s) and to observe the phenotype of the mutants. Carrying out this scheme in practice, however, requires considerable facility with the basic genetics of the organism under study and that the gene(s) not be present in more than one equivalent copy per haploid genome. Very few organisms have been studied which meet these conditions: first among them is the budding yeast (Saccharomyces cerevisiae), which has a very small genome, grows vegetatively as either a haploid or diploid, has an extraordinarily convenient, powerful and extensively developed genetic system (including advanced recombinant DNA methods) and contains just one copy of the actin and β-tubulin structural genes.

Keywords

Mother Cell Actin Gene Restrictive Temperature TUB2 Gene Spindle Pole Body 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Koteleansky, U., Gluckhova, M., Bejanian, M., Surguchov, A. and Smirnov, V. (1979) FEBS Lett. 102, 55–58.CrossRefGoogle Scholar
  2. 2.
    Water, D., Pringle, J. and Kleinsmith, L. (1980) J. Bacteriol. 144, 1143–1151.PubMedGoogle Scholar
  3. 3.
    Greer, C. and Schekman, R. (1983) Mol. Cell. Biol. 2, 1270–1278.Google Scholar
  4. 4.
    Lazarides, E. and Lindberg, U. (1974) Proc. Nat. Acad. Sci. U.S.A. 71, 4742–4746.CrossRefGoogle Scholar
  5. 5.
    Zechel, K. (1980) Eur. J. Biochem. 110, 337–341.PubMedCrossRefGoogle Scholar
  6. 6.
    Greer, C. and Schekman, R. (1982) Mol. Cell. Biol. 2, 1279–1286.Google Scholar
  7. 7.
    Gallwitz, D. and Seidel, R. (1980) Nucl. Acid Res. 8, 1043–1059.CrossRefGoogle Scholar
  8. 8.
    Ng, R. and Abelson, J. (1980) Proc. Nat. Acad. Sci. U.S.A. 77, 3912–3916.CrossRefGoogle Scholar
  9. 9.
    Gallwitz, D. and Sures, I. (1980) Proc. Nat. Acad. Sci. U.S.A. 77, 2546–2550.CrossRefGoogle Scholar
  10. 10.
    Gallwitz, D. (1982) Proc. Nat. Acad. Sci. U.S.A. 79, 3493–3497.CrossRefGoogle Scholar
  11. 11.
    Scherer, S. and Davis, R. (1979) Proc. Nat. Acad. Sci. U.S.A. 76, 4951–4955.CrossRefGoogle Scholar
  12. 12.
    Shortie, D., Haber, J. and Botstein, D. (1982) Science 217, 371–373.CrossRefGoogle Scholar
  13. 13.
    Shortle, D., Novick, P. and Botstein, D. (unpublished data).Google Scholar
  14. 14.
    Shortle, D., Koshland, D., Weinstock, G. and Botstein, D. (1980) Proc. Nat. Acad. Sci. U.S.A. 77, 5375–5379.CrossRefGoogle Scholar
  15. 15.
    Orr-Weaver, T., Szostak, J. and Rothstein, R. (1981) Proc. Nat. Acad. Sci. U.S.A. 78, 6354–6358.CrossRefGoogle Scholar
  16. 16.
    Lacroute, F. (personal communication).Google Scholar
  17. 17.
    Cabib, E. (1975) Ann. Rev. Microbiol. 29, 191–214.Google Scholar
  18. 18.
    Byers, R. and Goetsch, L. (1976) J. Cell. Biol. 69, 717–721.PubMedCrossRefGoogle Scholar
  19. 19.
    Adams, A. and Pringle, J. (unpublished data).Google Scholar
  20. 20.
    Kilmartin, J. and Adams, A. (unpublished data).Google Scholar
  21. 21.
    Sloat, B., Adams, A. and Pringle, J. (1981) J. Cell. Biol. 89, 395–405.Google Scholar
  22. 22.
    Hitchcock-De Gregori, S.E. (1980) Nature 288, 437–438.CrossRefGoogle Scholar
  23. 23.
    Jarvik, J. and Botstein, D. (1975) Proc. Nat. Acad. Sci. U.S.A. 72, 2738–2742.CrossRefGoogle Scholar
  24. 24.
    Moir, D., Steward, S., Osmond, B. and Botstein, D. (1982) Genetics 100, 547–563.PubMedGoogle Scholar
  25. 25.
    Robinow, C.F. and Marak, J. (1966) J. Cell. Biol. 29, 129–151.Google Scholar
  26. 26.
    Byers, B. (1981) in Molecular Biology of the Yeast Saccharomyces: Life Cycle and Inheritance (Strathern, J.N., Jones, E.W. and Broach, J.R., eds.), pp. 59–96, Cold Spring Harbor, NY.Google Scholar
  27. 27.
    Byers, B. and Goetsch, L. (1975) J. Bacteriol. 124, 511–523.PubMedGoogle Scholar
  28. 28.
    Pringle, J.R. and Hartwell, L.H. (1981) in Molecular Biology of the Yeast Saccharomyces: Life Cycle and Inheritance (Strathern, J.N., Jones, E.W. and Broach, J.R., eds), pp. 97–142, Cold Spring Harbor, NY.Google Scholar
  29. 29.
    Moens, P.B. and Rapoport, E. (1971) J. Cell. Biol. 50, 344–361.Google Scholar
  30. 30.
    Baum, P., Thorner, J. and Honig, L. (1978) Proc. Nat. Acad. Sci. U.S.A. 75, 4962–4966.Google Scholar
  31. 31.
    Kilmartin, J. (1981) Biochemistry 20, 3629–3633.PubMedCrossRefGoogle Scholar
  32. 32.
    Neff, N.N., Thomas, J.H., Grisafi, P. and Botstein, D. (1983) Cell 33, 211–219.PubMedCrossRefGoogle Scholar
  33. 33.
    Sheir-Neiss, G., Lai, M.H. and Morris, N.R. (1978) Cell 15, 639–647.PubMedCrossRefGoogle Scholar
  34. 34.
    Davidse, L.C. and Flach, W. (1977) J. Cell. Biol. 72, 174–193.Google Scholar
  35. 35.
    Thomas, J.H., Neff, N. and Botstein, D. (submitted to Genetics).Google Scholar
  36. 36.
    Cleveland, D., Lopata, M., MacDonald, R., Cowan, N., Rutter, W. and Kirschner, M. (1980) Cell 20, 95–106.PubMedCrossRefGoogle Scholar
  37. 37.
    Clarke, L. and Carbon, J. (1980) Nature 287, 504–509.PubMedCrossRefGoogle Scholar
  38. 38.
    Botstein, D. and Davis, R.W. (1982) in Molecular Biology of the Yeast Saccharomyces: Metabolism and Gene Expression (Strathern, J.N., Jones, E.W. and Broach, J.R., eds.) pp. 607–638, Cold Spring Harbor, NY.Google Scholar
  39. 39.
    Kilmartin, J., Wright, B. and Milstein, C. (1982) J. Cell. Biol. 93, 576–582.PubMedCrossRefGoogle Scholar
  40. 40.
    Wood, J.S. and Hartwell, L.H. (1982) J. Cell. Biol. 94, 718–726.PubMedCrossRefGoogle Scholar
  41. 41.
    Falco, S.C. and Botstein, D. (1983) Genetics 105, 857–872.PubMedGoogle Scholar
  42. 41.
    Falco, S.C. and Botstein, D. (1983) Genetics 105, 857–872.PubMedGoogle Scholar
  43. 43.
    Roeder, G.S. and Fink, G.R. (1980) Cell 21, 239–249.PubMedCrossRefGoogle Scholar
  44. 44.
    Fink, G.R. and Conde, J. (1977) in International Cell Biology, 1976–1977 (Brinkley, B.R. and Porter, K.R., eds.) p. 414, Rockefeller University Press, New York, NY.Google Scholar
  45. 45.
    Dutcher, S.K. and Hartwell, L.H. (1983) Cell 33, 203–210.PubMedCrossRefGoogle Scholar
  46. 46.
    Wood, J.S. and Hartwell, L.H. (1982) J. Cell. Biol. 94, 718–726.PubMedCrossRefGoogle Scholar
  47. 47.
    Botstein, D. and Maurer, R. (1982) Ann. Rev. Gen. 16, 61–83.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Peter Novick
    • 1
  • James H. Thomas
    • 1
  • David Botstein
    • 1
  1. 1.Department of BiologyMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations