Stability of Enzyme Inhibitors and Lectins in Foods and the Influence of Specific Binding Interactions

  • James C. Zahnley
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 177)

Abstract

Proteins with actual or potential antinutrient or toxicant activity found in foodstuffs include (1) enzyme inhibitors, especially those specific for serine proteinases and α-amylases, and (2) lectins (hemagglutinins). These inhibitors and lectins must be inactivated during processing or food preparation, usually by heat, to avoid possible undesirable effects. Knowledge of their heat stabilities thus helps determine conditions required for their inactivation or denaturation. Many are heat-stable proteins, and their conformations can be stabilized or destabilized by interactions with other constituents present in the food or the digestive tract. Differential scanning calorimetric (DSC) results show that specific binding inter-actions can lead to substantial increases in kinetic thermal stability of proteins. Examples of such stabilization include serine proteinase-proteinase inhibitor, α-amylase-amylase inhibitor, and metal ion-lectin complexes. The extent of thermal stabilization of proteinases in complexes with inhibitors is correlated with the equilibrium association constant. Presence of more than one denaturing unit revealed by DSC in complexes involving multiheaded inhibitors can be interpreted in relation to domain structures of the inhibitors. Basic information on stability of the enzyme inhibitors and lectins is relevant to food processing, quality, and safety.

Keywords

Entropy Manganese Mold Cysteine Polysaccharide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexandrov, V. Y. (1977). “Cells, Molecules, and Temperature”. Springer-Verlag, Berlin, Heidelberg, and New York.Google Scholar
  2. Anderson, R. L., Rackis, J. J., and Tallent, W. H. (1979). Biologically active substances in soy products. In: “Soy Protein and Human Nutrition”, H. L. Wilcke, D. T. Hopkins, and D. H. Waggle, eds., Academic Press, New York, pages 209–233.Google Scholar
  3. Balls, A. K. (1942). The fate of enzymes in processed foods. Fruit Prod. J 22, 36–39.Google Scholar
  4. Belew, M., Porath, J., and Sundberg, L. (1975). The trypsin and chymotrypsin inhibitors in chick peas (Cicer arietinum L.). Purification and properties of the inhibitors. Eur. J. Biochem 60, 247–258.PubMedCrossRefGoogle Scholar
  5. Birk, Y. (1961). Purification and some properties of a highly active inhibitor of trypsin and α-chymotrypsin from soy beans. Biochim. Biophys. Acta 54, 378–381.PubMedCrossRefGoogle Scholar
  6. Birk, Y. (1975T Proteinase inhibitors from plant sources. Methods Enzymol. 45, 695–739.Google Scholar
  7. Blumberg, S., and Tal, N. (1976). Effect of divalent metal ions on the digestibility of concanavalin A by endopeptidases. Biochim Biophys. Acta 453, 357–364.PubMedCrossRefGoogle Scholar
  8. Boisen, S., and Djurtoft, R (1982). Protease inhibitor from barley embryo inhibiting trypsin and trypsin-like microbial proteases. Purification and characterisation of two isoforms. J. Sci. Food Agric 33, 431–440.CrossRefGoogle Scholar
  9. Borrebaeck, C., and T Mattiasson, B. (1980). A study of structurally related binding properties of concanavalin A using differential scanning calorimetry. Eur. J. Biochem 107, 67–71.PubMedCrossRefGoogle Scholar
  10. Bryant, J., Green, T. R., Gurusaddaiah, T., and Ryan, C. A. (1976). Proteinase inhibitor II from potatoes: Isolation and charac-terization of its protomer components. Biochemistry 15, 3418–3424.PubMedCrossRefGoogle Scholar
  11. Buonocore, V., Petrucci, T., and Silano, V. (1977). Wheat protein inhibitors of α-amylase. Phytochemistry 16, 811–820.CrossRefGoogle Scholar
  12. Chandrasekher, G., Raju, D. S., and Pattabiraman, T. N. (1982). Natural plant enzyme inhibitors. Protease inhibitors in millets. J. Sci. Food Agric 33, 447–450.CrossRefGoogle Scholar
  13. Chu, T. H., and Hsu, C.-L. (1965). Inhibition of trypsin and chymotrypsin by ovoinhibitor. Acta Biochim. Sin 15, 434–441.Google Scholar
  14. Creighton, T. E. (1983). An empirical approach to protein conformational stability and flexibility. Biopolymers 22, 49–58.PubMedCrossRefGoogle Scholar
  15. De Marco, A., Menegatti, E., and Guarneri, M. (1982). H-NMR studies of the structure and stability of the bovine pancreatic secretory trypsin inhibitor. J. Biol. Chem 257, 8337–8342.PubMedGoogle Scholar
  16. Dietl, T., and Tschesche, H. (1976). Die Disulfidbrucken des Trypsin-Kallikrein-Inhibitors K aus Weinbergschnecken (Helix pomatia). Thermische Denaturierung und thermolysinolytische Inaktivierung. Hoppe-Seyler’s Z. Physiol. Chem 357, 139–145.CrossRefGoogle Scholar
  17. Donovan, J. W. (1979) Phase transitions of the starch-water system. Biopolymers 18, 263–275.CrossRefGoogle Scholar
  18. Donovan, J. W., and Beardslee, R. A. (1975). Heat stabilization produced by protein-protein association. A differential scanning calorimetric study of the trypsin-soybean trypsin inhibitor and trypsin-ovomucoid complexes. J. Biol. Chem 250, 1966–1971.PubMedGoogle Scholar
  19. Donovan, J. W., and Ross, K. D. (1973). Increase in the stability of avidin produced by binding of biotin. A differential scanning calorimetric study of denaturation by heat. Biochemistry 12, 512–517.PubMedCrossRefGoogle Scholar
  20. Donovan, J. W., and Ross, K. D. (1975). Iron binding to conalbumin. Calorimetric evidence for two distinct species with one bound iron atom. J. Biol. Chem 250, 6026–6031.PubMedGoogle Scholar
  21. Doyle, R. J., and Stroupe, S. D. (1978). Inhibition of concanavalin A by (ethylenedinitrilo)tetraacetic acid. Carbohydr. Res 64, 327–333.PubMedCrossRefGoogle Scholar
  22. Doyle, R. J., Pittz, E. P., and Woodside, E. E. (1968). Carbohydrate-protein complex-formation. Some factors affecting the interaction of D-glucose and polysaccharides with concanavalin A. Carbohydr. Res. 8, 89–100.CrossRefGoogle Scholar
  23. Doyle, R. J., Thomasson, D. L., and Nicholson, S. K. (1976). Stabilization of concanavalin A by metal ligands. Carbohydr. Res 46, 111–118.PubMedCrossRefGoogle Scholar
  24. Edelhoch, H., and Steiner, R. F. (1965). Changes in physical properties accompanying the interaction of trypsin with protein inhibitors. J. Biol. Chem 240, 2877–2882.PubMedGoogle Scholar
  25. Ellenrieder, G., Geronazzo, H., and De Bojarski, A. B. (1980). Thermal inactivation of trypsin inhibitors in aqueous extracts of soybeans, peanuts, and kidney beans: Presence of substances that accelerate inactivation. Cereal Chem. 57, 25–27.Google Scholar
  26. Feeney, R. E. (1980). Overview on the chemical deteriorative changes of proteins and their consequences. In: “Chemical Deterioration of Proteins”, J. R. Whitaker and M. Fujimaki,Am. Chem. Soc. Symp. Ser. 123, 1–47.Google Scholar
  27. Fraenkel-Conrat, H., Bean, R. C., Ducay, E. D., and Olcott, H. S. (1952). Isolation and characterization of a trypsin inhibitor from lima beans. Arch. Biochem. Biophys 37, 393–407.PubMedCrossRefGoogle Scholar
  28. Friedman, M., Grosjean, O. K., and Zahnley, J. C. (1982a). Effect of disulfide bond modification on the structure and activities of enzyme inhibitors. In: “Food Protein Deterioration. Mechanisms and Functionality”, J. P. Cherry, ed., Am. Chem. Soc. Symp. Ser. 206, 359–407.CrossRefGoogle Scholar
  29. Friedman, M., Grosjean, O. K., and Zahnley, J. C. (1982b). Inactivation of soya bean trypsin inhibitors by thiols. J. Sci. Food Agric. 33, 165–172.PubMedCrossRefGoogle Scholar
  30. Friedman, M., Grosjean, OK., and Zahnley, J. C. (1982c). Cooperative effects of heat and thiols in activating trypsin inhibitors from legumes in solution and in the solid state. Nutr. Rep. Int 25, 743–751.Google Scholar
  31. Friedman, M., Zahnley, J. C., and Wagner, J. R. (1980). Estimation of the disulfide content of trypsin inhibitors as S-p-(2-pyridyl- ethyl)-L-cysteine. Anal. Biochem 106, 27–34.PubMedCrossRefGoogle Scholar
  32. Fritz, H., and Tschesche, H., eds. (1971) “Proceedings of the First International Research Conference on Proteinase Inhibitors, Munich, 1970”. Walter de Gruyter, Berlin.Google Scholar
  33. Fritz, H., Tschesche, H., Greene, L. J., and Truscheit, E., eds. (1974). “Proteinase Inhibitors. Bayer Symposium V.” Springer-Verlag, Berlin, Heidelberg, and New York. (Proc. 2nd Int. Res. Conf. on Proteinase Inhibitors, 1973 ).Google Scholar
  34. Gallaher, D., and Schneeman, B. O. (this volume). Nutritional and metabolic response to plant inhibitors of digestive enzymes. In: “Nutritional and Metabolic Aspects of Food Safety”, M. Friedman, ed., Advances in Experimental Medicine and Biology, Plenum Press, New York.Google Scholar
  35. Goldstein, I. J., and Hayes, C. E. (1978). The Lectins: Carbohydrate-binding proteins of plants and animals. Adv. Carbohydr. Chem. Biochem 35, 127–340.PubMedCrossRefGoogle Scholar
  36. Grant, G., More, L. J., McKenzie, N. H., and Pusztai, A. (1982). The effect of heating on the hemagglutinating activity and nutritional properties of bean (Phaseolus vulgaris) seeds. J. Sci. Food Agric 33, 1324–132PubMedCrossRefGoogle Scholar
  37. Green, N. M., and Work, E. (1953). Pancreatic trypsin inhibitor. 1 Preparation and properties. Biochem. J 54, 257–266.PubMedGoogle Scholar
  38. Huang, D. Y., Swanson, B. G., and Ryan, C. A. (1981). Stability of proteinase inhibitors in potato tubers during cooking. J. Food Sci 46, 287–290.CrossRefGoogle Scholar
  39. Huber, R., and Bennett, W. S., Jr. (1982). Functional significance of flexibility in proteins. Pure Appl. Chem 54, 2489–2500.CrossRefGoogle Scholar
  40. Ikenaka, T., and Odani, S. (1978). Structure-function relationships of soybean double-headed proteinase inhibitors. In: “Regulatory Proteolytic Enzymes and Their Inhibitors.” (Proc. 11th FEBS Meeting), S. Magnusson, M. Ottesen, B. Foltmann, K. Dano, and H. Neurath, eds., Pergamon, Oxford, pages 207–216Google Scholar
  41. Imondi, A. R., Ferguson, J. L., and Wolgemuth, R. L. (1973). Inhibition of human chymotrypsin by dried egg white. Am. J. Dig. Pis 18, 1051–1054.CrossRefGoogle Scholar
  42. Iwasaki, T., Klyohara, T., and Yoshikawa, M. (1971). Purification and partial characterization of two different types of proteinase inhibitors (inhibitors II-a and II-b) from potatoes. J. Biochem. (Tokyo) 70, 817–826.Google Scholar
  43. Jaenicke, R., ed. (1980). “Protein Folding.” Elsevier/North-Holland Biomedical Press, Amsterdam and New York.Google Scholar
  44. Jaffe, W. G. (1980). Hemagglutinins (lectins). In: “Toxic Constituents of Plant Foodstuffs”, 2nd Edn., T. E. Liener, ed., Academic Press, New York, pages 73–102.Google Scholar
  45. Janin, J., and Chothia, C. (1976). Stability and specificity of protein-protein interactions: the case of the trypsin-trypsin inhibitor complexes. J. Mol. Biol 100, 197–211.PubMedCrossRefGoogle Scholar
  46. Jibson, M. D., Birk, Y., and Bewley, T. A. (1981). Circular dichroism of trypsin and chymotrypsin complexes with Bowman-Birk or chickpea trypsin inhibitor. Int. J. Pept. Protein Res 18, 26–32.PubMedCrossRefGoogle Scholar
  47. Kassell B. (1970). Inhibitors of proteolytic enzymes. Methods Enzymol. 19, 839–906.CrossRefGoogle Scholar
  48. Kassell, B., and Williams, M. J. (1976). Proteinase inhibitors. In: “CRC Handbook of Biochemistry and Molecular Biology, 3rd Edn., Proteins-Vol. II”, G. D. Fasman, ed., CRC Press, Cleveland, pages 583–668.Google Scholar
  49. Kato, I., Kohr, W. J., and Laskowski, M., Jr. (1980). Preparation of intact domains from chicken ovoinhibitor by limited cleavage. Fed. Proc 39, 1688.Google Scholar
  50. Kato, I., Schrode, J., Wilson, K. A., and Laskowski, M., Jr. (1976). Evolution of proteinase inhibitors. Protides Biol. Fluids, Proc. Col log 23, 235–243.Google Scholar
  51. Kim, P. S., and Baldwin, R. L. (1982). Specific intermediates in the folding reactions of small proteins and the mechanism of protein folding. Annu. Rev. Biochem 51, 459–489.PubMedCrossRefGoogle Scholar
  52. Kinsella, J. E. (1976). Functional properties of proteins in foods: a survey. CRC Crit. Rev. Food Sei. Nutr 219–280.Google Scholar
  53. Kinsella, J. E. (1979). Functional properties of soy proteins. J. Am. Oil Chem. Soc 56, 242–258.CrossRefGoogle Scholar
  54. Koenig, S. H., Brown, R. D., Ill, Brewer, C. F., and Sherry, A. D. (1982). Conformational equilibrium of demetalized concanavalin A: a reexamination of the kinetics of its interactions with Ca2+ -ions and fluorescent saccharide. Biochem. Biophys. Res. Commun 109, 1047–1053.Google Scholar
  55. Kraus, £., and hemtert, U. TT976). Proteinase K from the mold Tritirachium album Limber. Specificity and mode of action. Hoppe-Seyler’s Z. Physiol. Chem 357, 937–947.Google Scholar
  56. Kunitz, M. (1947). Crystalline soybean trypsin inhibitor. II. General properties. J. Gen. Physiol 30, 291–310.PubMedCrossRefGoogle Scholar
  57. Laskowski, M., Jr., and Kato, I. (1980). Protein inhibitors of proteinases. Annu. Rev. Biochem 49, 593–626.PubMedCrossRefGoogle Scholar
  58. Laskowski, M., Jr., and Sealock, R. W. (1971). Protein proteinase inhibitors-molecular aspects. In: “The Enzymes”, 3rd Edn., Vol. Ill, P. D. Boyer, ed., Academic Press, New York, pages 375–473.Google Scholar
  59. Laskowski, M., Jr., Kato, I., Kohr, W. J., March, C. J., and Bogard, W. C. (1980). Evolution of the family of serine proteinase inhibitors homologous to pancreatic secretory trypsin inhibitor (Kazal). Protides Biol. Fluids, Proc. Collog 28, 123–128.Google Scholar
  60. Lei, M-G., Bassette, R., and Reeck, G. R. (1981). Effect of cysteine on heat inactivation of soybean trypsin inhibitors. J. Agric. Food Chem 29, 1196–1199.PubMedCrossRefGoogle Scholar
  61. Liener, I. E. (1976). Phytohemagglutinins (phytolectins). Annu. Rev. Plant Physiol 27, 291–319.CrossRefGoogle Scholar
  62. Liener, I. E. (1979). Significance for humans of biologically active factors in soybeans and other food legumes. J. Am. Oil Chem. Soc 56, 121–129.PubMedCrossRefGoogle Scholar
  63. Liener, I. E. (1980). Miscellaneous toxic factors. In. “Toxic Constituents of Plant Foodstuffs”, 2nd Edn., I. E. Liener, ed., Academic Press, New York, pages 429–467.Google Scholar
  64. Liener, I. E., and Kakade, M. L. (1969). Protease inhibitors. In: “Toxic Constituents of Plant Foodstuffs”, 1st Edn., I. E. Oener, ed., Academic Press, New York, pages 7–68.Google Scholar
  65. Liener, I. E., and Kakade, M. L. (1980). Protease inhibitors. In: “Toxic Constituents of Plant Foodstuffs”, 2nd Edn., I. E. Liener, ed., Academic Press, New York, pages 7–71.Google Scholar
  66. Lineweaver, H., and Murray, C. W. (1947). Identification of the trypsin inhibitor of egg white with ovomucoid. J. Biol. Chem 171, 565–581.PubMedGoogle Scholar
  67. Lis, H., and Sharon N. (1977). Lectins: their chemistry and application to immunology. In: “The Antigens”, Vol. 4, M. Sela, ed., Academic Press, New York, pages 429–529.Google Scholar
  68. Lis. H., and Sharon, N. (1981). Lectins in higher plants. In: “The Biochemistry of Plants. A Comprehensive Treatise. Vol. 6: Proteins and Nucleic Acids”, A. Marcus, ed., Academic Press, New York, pages 371–447.Google Scholar
  69. Loewus, F. A., and Ryan, C. A., eds. (1981). The Phytochemistry of Cell Recognition and Cell Surface Interactions. Recent Adv. Phytochem., Vol. 15.Google Scholar
  70. Marshall, J. J. (1975). α-Amylase inhibitors from plants. In: “Physiological Effects of Food Carbohydrates”, A. Jeanes and J. Hodges, Am. Chem. Soc. Symp. Ser 16, 244–266.Google Scholar
  71. Matsuda, T., Watanabe, K., and Nakamura, R. (1983T. Ovomucoid and ovoinhibitor isolated from chicken egg white are immunologically cross-reactive, Biochem. Biophys. Res. Commun 110, 75–81.Google Scholar
  72. Matsuda, T., Watanabe, K., and Sato, Y. (1981a). independent thermal unfolding of ovomucoid domains. Biochim. Biophys. Acta 669, 109–112.Google Scholar
  73. Matsuda, T., Watanabe, K., and Sato, Y. (1981b). Temperature-induced structural changes in egg white ovomucoid. Agric. Biol. Chem 45, 1609–1614.CrossRefGoogle Scholar
  74. Matsuda, T., Watanabe, K., and Sato, Y. (1981c). Heat-induced aggregation of egg white proteins as studied by vertical flat-sheet Polyacrylamide gel electrophoresis. J. Food Sei 46, 1829–1834.CrossRefGoogle Scholar
  75. MatsusTfima, K. (1958). On the naturally occurring inhibitors for Aspergillus protease. III. Ovo-inhibitor. Nippon Nogei Kagaku Kaishi 32, 211–215.CrossRefGoogle Scholar
  76. McCammon, A. J., anTKarplus, M. (1983). The dynamic picture of protein structure. Acc. Chem. Res 16, 187–193.CrossRefGoogle Scholar
  77. Means, G. E., Ryan, D. S., and Feeney, R. E. (1974). Protein inhibitors of proteolytic enzymes. Acc. Chem. Res 7, 315–320.CrossRefGoogle Scholar
  78. Melville, J. C., and Ryan, C. A. (1972). Chymotrypsin inhibitor I from potatoes. Large scale preparation and characterization of its subunit components. J. Biol. Chem 247, 3445–3453.PubMedGoogle Scholar
  79. Menegatti, E., Tomatis, R., Guarneri, M., and Scatturin, A. (1981). Conformational stability of porcine-pancreatic secretory trypsin inhibitors (Kazal inhibitors). Int. J. Pept. Protein Res 17, 454–459.PubMedCrossRefGoogle Scholar
  80. Minton, K. W., Karmin, P., Hahn, G. M., and Minton, A. P. (1982). Nonspecific stabilization of stress-susceptible proteins by stress-resistant proteins: a model for the biological role of heat shock proteins. Proc. Nat. Acad. Sci. U.S.A 79, 7107–7111.CrossRefGoogle Scholar
  81. Nachbar, M. S., and Oppenheim, J. D. (1980). Lectins in the United States diet: a survey of lectins in commonly consumed foods an a review of the literature. Am. J. Clin. Nutr 33, 2338–2345.PubMedGoogle Scholar
  82. Osuga, D. T., Bialer, J. C., Uy, R. L., Sjoberg, L., and Feeney, R. E. (1974). Comparative biochemistry of penguin egg white proteins-I. Ovomucoids: composition and inhibitory activities for trypsin, α-chymotrypsin and subtilisin. Comp. Biochem. Physiol. B 48B, 519–533.Google Scholar
  83. Pain, R. H. (1983) Protein folding, denaturation and stability. Biochem. Soc. Trans 11, 15–16.PubMedGoogle Scholar
  84. Pearce, G., McGinnis, J., and Ryan, C. A. (this volume). Nutritional studies of a carboxypeptidase inhibitor from potato tubers. In: “Nutritional and Metabolic Aspects of Food Safety”, M Friedman, ed., Advances in Experimental Medicine and Biology, Plenum Press, New York.Google Scholar
  85. Perkins, D., and Toledo, R. T. (1982). Effect of heat treatment for trypsin inhibitor inactivation on physical and functional properties of peanut protein. J. Food Sci 47, 917–923.CrossRefGoogle Scholar
  86. Pfeil, W. (1981). The problem of the stability oFglobular proteins. Mol. Cell. Biochem 40, 3–28.PubMedCrossRefGoogle Scholar
  87. Plunkett, G., and Ryan, C. A. (1980). Reduction and carboxamidomethylation of the single disulfide bond of proteinase inhibitor I from potato tubers. Effects on stability, immunological properties, and inhibitory activities. J. Biol. Chem 255, 2752–2755.PubMedGoogle Scholar
  88. Privalov, P. L. (1979). Stability of proteins. Small globular proteins. Adv. Protein Chem 33, 167–241.PubMedCrossRefGoogle Scholar
  89. Privalov, P. L. (1980). Scanning microcalorimeters for studying macromolecules. Pure Appl. Chem 52, 479–497.CrossRefGoogle Scholar
  90. Privalov, P. L. (1982) Stability of proteins. Proteins which do not present a single cooperative system. Adv. Protein Chem 35, 1–104.PubMedCrossRefGoogle Scholar
  91. Ramshaw, J. A. M. (1982). Structures of plant proteins. “Nucleic Acids and Proteins in Plants I: Structure, Biochemistry, and Physiology of Proteins”. (Encyclopedia of Plant Physiology, New Series, Vol. 14, Pt. A), D. Boulter and B. Parthier, eds., Springer-Verlag, Berlin, Heidelberg, and New York, pages 229–290.Google Scholar
  92. Richardson, M. (1977). The proteinase inhibitors of plants and microorganisms. Photochemistry 16, 159–169.CrossRefGoogle Scholar
  93. Richardson, M. (1981). Protein inhibitors of enzymes. Food Chem. 6, 235–253.CrossRefGoogle Scholar
  94. Ryan, C. A. (1966). Chymotrypsin inhibitor I from potatoes: reactivity with mammalian, plant, bacterial, and fungal proteinases. Biochemistry 5, 1592–1596.PubMedCrossRefGoogle Scholar
  95. Ryan, C. A. (1981). Proteinase inhibitors. In: “The Biochemistry of Plants. A Comprehensive Treatise. VoTT 6: Proteins and Nucleic Acids”, A. Marcus, ed., Academic Press, New York, pages 351–370.Google Scholar
  96. Ryan, C. A., and Kassell, B. (1970). Chymotrypsin inhibitor I from potatoes. Methods Enzymol. 19, 883–889.CrossRefGoogle Scholar
  97. Sanderson, J. E., Freed, R. C., and Ryan, D. S. (1982). Thermal denaturation of genetic variants of the Kunitz soybean inhibitor. Biochim. Biophys. Acta 701, 233–241.CrossRefGoogle Scholar
  98. Sato, S., and Murao, S. (1973). Isolation and crystallization of microbial alkaline protease inhibitor, S-SI. Agric. Biol. Chem 37, 1067–1074.CrossRefGoogle Scholar
  99. Schulz, G. E, and Schirmer, R. H. (1979). “Principles of Protein Structure.” Springer-Verlag, Berlin, Heidelberg, and New York.Google Scholar
  100. Schwimmer, S. (1981). “Source Book of Food Enzymology.” AVI, Westport, CT.Google Scholar
  101. Sgarbieri, V. C., and Whitaker, J. R. (1982). Physical, chemical, and nutritional properties of common bean (Phaseolus) proteins. Adv. Food Res 28, 93–166.PubMedCrossRefGoogle Scholar
  102. Shivaraj, B., and Pattabiraman, T. N. (1981). Natural plant enzyme inhibitors. Characterization of an unusual α-amylase/trypsin inhibitor from ragi (Eleusine coracana Gaertn.). Biochem. J 193, 29–36.PubMedGoogle Scholar
  103. Shivaraj, B., Rao, H. N., and Pattabiraman, T. N. (1982). Natural plant enzyme inhibitors. Isolation of a trypsin/α-amylase inhibitor and a chymotrypsin/trypsin inhibitor from ragi (Eleusine coracana) grains by affinity chromatography and study of their properties. J. Sci. Food Agric 33, 1080–1091.CrossRefGoogle Scholar
  104. Silano, V. (1978). Biochemical and nutritional significance of wheat albumin inhibitors of α-amylase. Cereal Chem. 55, 722–731.Google Scholar
  105. Silano, V., and Zahnley, J. C. (1978). Association of Tenebrio molitor L. α-amylase with two protein inhibitors-one monomeric, one dimeric-from wheat flour. Differential scanning calorimetric comparison of heat stabilities. Biochim. Biophys. Acta 533, 181–185.PubMedCrossRefGoogle Scholar
  106. Stevens, F. C., and Feeney, R. E. (1963). Chemical modification of avian ovomucoids. Biochemistry 2, 1346–1352.PubMedCrossRefGoogle Scholar
  107. Stroupe, S. D., and Doyle, R. J. (1980). Kinetic analysis of calcium binding to concanavalin A. J. Inorg. Biochem 12, 173–178.PubMedCrossRefGoogle Scholar
  108. Sturtevant, J. M. (1974). Some applications of calorimetry in bio-chemistry and biology. Annu. Rev. Biophys. Bioeng 2 35–51.CrossRefGoogle Scholar
  109. Takahashi, K., and Sturtevant, J. M. (1981). Thermal denaturation of Streptomyces subtilisin inhibitor, subtilisin BPN1, and the subtilisin-inhibitor complex. Biochemistry 20, 6185–6190.PubMedCrossRefGoogle Scholar
  110. Tan, N.-H., Lowe, E. S. H., and Iskandar, M. (1982) The extractability of winged bean (Psophocarpus tetragonolobus) seed trypsin inhibitors. J. Sci. Food Agric 33, 1327–1330.CrossRefGoogle Scholar
  111. Thompson, L. U., Rea, R. L., and Jenkins, D. J. A. (1983). Effect of heat processing on hemagglutinin activity in red kidney beans. J. Food Sci 48, 235–236.CrossRefGoogle Scholar
  112. Tishchenko, V. M., and Gorodkov, B. G. (1978?), quoted in Privalov (1979).Google Scholar
  113. Tomimatsu, Y., Clary, J. J., and Bartulovich, J. J. (1966) Physical characterization of ovoinhibitor, a trypsin and chymotrypsin inhibitor from chicken egg white. Arch. Biochem. Biophys 115, 536–544.PubMedCrossRefGoogle Scholar
  114. Toms, G. C. (1981). Lectins in Leguminosae. In: “Advances in Legume Systematics”, R. M. Polhill and PTH. Raven, eds., Royal Botanic Gardens, Kew, pages 561–577.Google Scholar
  115. Tschesche, H. (1981). Proteolytic enzyme inhibitors. Med. Chem. Adv., Proc. Int. Symp., 7th, 1980, F. G. De Las Heras and S. Yega, eds., Pergamon Press, Oxford, pages 411–422.Google Scholar
  116. Tschesche, H. (1974). Biochemistry of natural proteinase inhibitors. Angew. Chem. Int. Ed. Engl 13, 10–28.PubMedCrossRefGoogle Scholar
  117. Tur-Sinai, A., Birk, Y., Gertler, A. and Rigbi, M. (1972). A basic trypsin- and chymotrypsin-inhibitor from groundnuts (Arachis hypogaea). Biochim. Biophys. Acta 263, 666–672.CrossRefGoogle Scholar
  118. Uehara, Y., Tonomura, B., and Hiromi, K. (1978). Direct fluorometric determination of a dissociation constant as low as 10−10 M for the subtilisin BPN’-protein proteinase inhibitor (Streptomyces subtilisin inhibitor) complex by a single photon counting technique. J. Biochem. (Tokyo) 84, 1195–1202.Google Scholar
  119. Veerabhadrappa, P. S., Manjunath, N. H., and Virupaksha, T. K. (1978). Proteinase inhibitors of finger millet (Eleusine coracana Gaertn.). J. Sei. Food Agric 29, 353–358.CrossRefGoogle Scholar
  120. Vogel, R., Trautschold, I., and Werle, E. (1958). “Natural Proteinase Inhibitors.” Academic Press, New York.Google Scholar
  121. Weder, J. K. P. (1981). Protease inhibitors in the Leguminosae. In: “Advances in Legume Systematics”, R. M. Polhill and P. H. Eaven, eds., Royal Botanic Gardens, Kew, pages 533–560.Google Scholar
  122. Wetlaufer, D. B. (1981). Folding of protein fragments. Adv. Protein Chem 34, 61–92.PubMedCrossRefGoogle Scholar
  123. Whitaker, J. R. (1981). Naturally occurring peptide and protein inhibitors of enzymes. In: “Impact of Toxicology on Food Processing”, J. C. Ayres and J. C. Kirschman, eds., AVI, Westport, CT, pages 57–104.Google Scholar
  124. Whitaker, J. R., and Feeney, R. E. (1973). Enzyme inhibitors in foods. In: “Toxicants Occurring Naturally in Foods”, 2nd Edn., F.M. Strong, ed., National Academy of Sciences, Washington, D.C., pages 276–298.Google Scholar
  125. Wüthrich, K., Wagner, G., Richarz, R.,and Braun, W. (1980). Correlations between internal mobility and stability of globular proteins. Biophys. J 32, 549–560.Google Scholar
  126. Yoshikawa, M., Ogura, S., and TatsumiTW. (1977). Some properties of proteinase inhibitors from adzuki beans (Phaseolus angularis). Agric. Biol. Chem 41, 2235–2239.CrossRefGoogle Scholar
  127. Zahnley, J. C. (1973) Evidence that the two binding sites for trypsin on chicken ovoinhibitor are not equivalent. Dissociation of the complexes with porcine trypsin. J. Biol. Chem 249, 4282–4285.Google Scholar
  128. Zahnley, J. C. (1975). Preferred binding of bovine and porcine trypsins at two different sites on chicken ovoinhibitor. Reduced dissociation of mixed trypsin complexes. J. Biol. Chem 250, 7879–7884.PubMedGoogle Scholar
  129. Zahnley, J. C. (1977). Independence of domains in protease- inhibitor complexes formed by singleheaded and multiheaded inhibitors. Fed. Proc 36, 765.Google Scholar
  130. Zahnley, J. C. (1979). Independent heat stabilization of proteases associated with multiheaded inhibitors. Trypsins bound at nonequivalent sites on chicken ovoinhibitor. J. Biol. Chem 254, 9721–9727.PubMedGoogle Scholar
  131. Zahnley, J. C. (1980). Independent heat stabilization of proteases associated with multiheaded inhibitors. Complexes of chymotrypsin, subtilisin and trypsin with chicken ovoinhibitor and with lima bean protease inhibitor. Biochim. Biophys. Acta 613, 178–190.PubMedCrossRefGoogle Scholar
  132. Zahnley, J. C. (1981). Effects of manganese and calcium on conformational stability of concanavalin A: a differential scanning calorimetric study. J. Inorg. Biochem 15, 67–78.PubMedCrossRefGoogle Scholar
  133. Zahnley, J. C., and Davis, J. G. (1970). Determination of trypsin-inhibitor complex dissociation by use of the active site titrant, p-nitrophenyl p’-guanidinobenzoate. Biochemistry 9, 1428–1433.PubMedCrossRefGoogle Scholar
  134. Zahnley, J. C., and Friedman, M. (1982). Absorption and fluorescence spectra of S-quinolylethylated Kunitz soybean trypsin inhibitor. J. Protein Chem 1, 225–240.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • James C. Zahnley
    • 1
  1. 1.Western Regional Research Center, Agricultural Research ServiceUnited States Department of AgricultureBerkeleyUSA

Personalised recommendations