Advertisement

A Possible Role for Excitatory Neurotoxic Amino Acids in the Pathogenesis of Hepatic Encephalopathy

  • F. Moroni
  • G. Lombardi
  • G. Moneti
  • D. Pellegrini
  • C. Cortesini

Abstract

Extensive research in the past few years has been directed towards understanding the role of acidic excitatory amino acids in the pathogenesis of several neurological and psychiatric disorders.1–3 However, relatively little information is available on the role of glutamic acid (GLU), the prototype of acidic excitatory amino acids, in the pathogenesis of hepatic encephalopathy.4

Keywords

Glutamic Acid Hepatic Encephalopathy Caudate Nucleus Hepatic Coma Chronic Liver Failure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. J. Roberts, J. Storm-Mathisen, and G.A.R. Johnston,“Glutamate: Transmitter in the Central Nervous System” 1–222, J. Wiley and Sons eds. Chichester (1981).Google Scholar
  2. 2.
    G. Di Chiara, G. L. Gessa, eds. 1981, “Glutamate as a neurotransmitter”, Adv. Biochem. Psychopharmacol. Vol. 27, Raven Press, New York.Google Scholar
  3. 3.
    J. T. Coyle, Neurotoxic amino acids in human degenerative disorders, Trends in Neurosciences, 5: 287–288 (1982).CrossRefGoogle Scholar
  4. 4.
    H. O. Conn and M. Lieberthal, “The Hepatic Coma Syndromes and the Lactulose” William and Wilkins, Baltimore (1979).Google Scholar
  5. 5.
    R. Schwartz, G. B. Philips, G. J. Gabudza Jr.,and C. S. Davidson, Blood ammonia and electrolytes in hepatic coma, J. Lab. Clin. Med., 42: 499–508 (1953).PubMedGoogle Scholar
  6. 6.
    S. P. Bessman, J. F. Fazekas,and A. N. Bessman, Uptake of ammonia by the brain in hepatic coma, Proc. Soc. Exp. Biol. Med., 85: 66–67 (1954).PubMedGoogle Scholar
  7. 7.
    C. J. Fisher and W. W. Faloon, Blood ammonia levels in hepatic cirrhosis: their control by the oral administration of neomycin, N. Eng. J. Med., 256: 1030–1050 (1957).CrossRefGoogle Scholar
  8. 8.
    H. F. Bradford and H. F. Ward, On glutaminase activity in mammalian synaptosomes, Brain Research, 110: 115–125 (1976).PubMedCrossRefGoogle Scholar
  9. 9.
    M. H. Kyu and J. B. Cavanagh, Some effects of portocaval anastomosis in the male rat, Brit. J. Exp. Path., 51: 217–227 (1970).PubMedGoogle Scholar
  10. 10.
    M. Ehrlich, F. Plum, and T. E. Duffy, Blood and brain ammonia concentrations after portocaval anastomosis: effects of acute loading, J. Neurochem., 34: 1538–1542 (1980).PubMedCrossRefGoogle Scholar
  11. 11.
    B. Hindfelt, On mechanisms in hyperammonemic coma with particular reference to hepatic encephalopathy, in: “Annals of New York Ac. of Sciences”, Vol. 252, 116–123 (1975).Google Scholar
  12. 12.
    G. Zanchin, P. Rigotti, N. Dussini, P. Vassanelli and L. Battistini, Cerebral amino acid levels and uptake in rats after portocaval anastomosis: regional studies “in vivo”, J. Neuroscience Research, 4: 301–310 (1979).CrossRefGoogle Scholar
  13. 13.
    S. Kamata, A. Okada, T. Watanabe, Y. Kawashima,and S. Schenker, Hepatic encephalopathy, Gastroenterology, 76: 184–195 (1979).Google Scholar
  14. 14.
    G. B. Philips, R. Schwartz, G. J. G.buzda,and C. S. Davidson, The syndrome of impending hepatic coma in patients with cirrhosis of the liver, given certain nitrogenous substance, New Eng. J. Med., 247: 239–243 (1952).CrossRefGoogle Scholar
  15. 15.
    W. V. Dermott and R. D. Adams, Episodic stupor associated with Eck fistula in the human with particular reference to the metabolism of ammonia, J. Clin. Invest., 33: 1–9 (1954).CrossRefGoogle Scholar
  16. 16.
    A. M. Hoyumpa, P. V. Desmono, G. R. Auant, R. K. Roberts, and S. Schenker, Hepatic encephalopathy, Gastroenterology, 76: 184–195 (1979).PubMedGoogle Scholar
  17. 17.
    F. Vergara, F. Plum, and T. E. Duffy, a-ketoglutaramate: in creased concentrations in the cerebrospinal fluid of patients in hepatic coma, Science, 183: 81–83 (1974).PubMedCrossRefGoogle Scholar
  18. 18.
    M. H. Rosen, N. Yoshimura, J.M. Hodgman, and J.E. Fischer,Plasma amino acid patterns in hepatic encephalopathy of differing etiology, Gastroenterology, 72: 483–487 (1977).PubMedGoogle Scholar
  19. 19.
    F. Moroni, R. Corradetti, F. Casamenti, G. Moneti,and G. Pepeu, The release of endogenous GABA and GLU from the cerebral cortex in the rat, Naunyn-Schmiedeberg’s Arch. Pharmacol., 316: 235–239 (1981).Google Scholar
  20. 20.
    F. Moroni, D. L. Cheney, E. Peralta, and E. Costa, Opiate receptor agonists as modulators of GABA turnover in the nucleus caudatus, globus pallidus and substantia nigra of the rat, J. Pharmacol. Exp. Ther., 270: 870–877 (1978).Google Scholar
  21. 21.
    F. Moroni, Turnover as a tool to explore the function of GABA ergic synapses: Physiological and pharmacological studies, in: GABA: Biochemistry and CNS functions, “Advances in Experimental Medicine”, P. Mandel and F.V. De Feudis eds., 123: 189–204, Plenum Press, New York (1979).Google Scholar
  22. 22.
    A. Guidotti, M. Baraldi, J. P. Schwartz, and E. Costa, Molecular mechanism regulating the interactions between the benzodiazemines and GABA receptors in the central nervous system, Pharmacol. Biochem. Behay., 10: 803–807 (1979).CrossRefGoogle Scholar
  23. 23.
    F. Moroni, G. Lombardi, G. Moneti, and C. Cortesini, The release and the neosynthesis of glutamic acid are increased in experimental models of hepatic encephalopathy, J. Neurochem. (1982).Google Scholar
  24. 24.
    L. Bertilsson, C. C. Mao, and E. Costa, Application of principles of steady-state kinetics to the estimation of GABA turnover rate in nuclei of rat brain, J. Pharmacol. Exp. Ther., 200: 277–284 (1977).PubMedGoogle Scholar
  25. 25.
    S. H. Lee and B. Fisher, Portocaval shunt in the rat, Surgery, 50: 668–672 (1961).PubMedGoogle Scholar
  26. 26.
    A. J. Zamora, J. B. Cavanagh, and M. H. Kyu, Ultrastructural responses of the astrocytes to portocaval anastomosis in the rat, J. Neural. Sci., 18: 25–45 (1973).CrossRefGoogle Scholar
  27. 27.
    M. D. Noremberg, A light and electron microscopic study of experimental portal-systemic (ammonia) encephalopathy, J. Lab. Investigation, 36: 618–627 (1977).Google Scholar
  28. 28.
    M. D. Tricklebank, J. L. Smart, D. L. Bloxam and G. Curzon, Effects of chronic experimental liver dysfunction and Ltryptophan on behavior in the rat, Pharmacol. Biochem. and Behavior, 9: 181–189 (1978).CrossRefGoogle Scholar
  29. 29.
    G. Simert, A. Nobin, E. Rosengren, and J. Vang, Neurotransmitter changes in the rat brain after portocaval anastomosis, Eur. Surg. Res., 10: 73–85 (1978).PubMedCrossRefGoogle Scholar
  30. 30.
    G. S. Sarna, M. W. B. Bradbury, J. E. Cremer, J. C. K. Lai, and H. M. Teal, Brain metabolism and specific transport at the blood-brain barrier after portocaval anastomosis in the rat, Brain Res., 160: 69–83 (1979).PubMedCrossRefGoogle Scholar
  31. 31.
    K. Krnjevic, Chemical nature of synaptic transmission in vertebrates, Physiol. Rev., 54: 418–540 (1974).Google Scholar
  32. 32.
    J. W. Olney, O. L. Ho, and V. Rhee, Cytotoxic effects of acidic and sulphur containing amino acids on the infant mouse central nervous system, Exp. Brain Res., 14: 61–76 (1971).Google Scholar
  33. 33.
    A. Plaitakis, S. Berl, and D. M. Yahr, Abnormal glutamate metabolism in adult-onset degenerative neurological disorder, Science, 216: 193–196 (1982).PubMedCrossRefGoogle Scholar
  34. 34.
    R. Schwarcz, C. Kohler, R. M. Mangano, and A. N. Neophytides, Glutamate-induced neuronal degeneration: Studies on the role of glutamate re-uptake in “Glutamate as a Neurotransmitter”, G. Di Chiara and G. L. Gessa, eds., 403–412, Raven Press, New York (1981).Google Scholar
  35. 35.
    H. Hennecke, P. Wiechert, Seizures and the dose of L-glutamic acid in rats, Epilepsia, 11: 327–331 (1970).PubMedCrossRefGoogle Scholar
  36. 36.
    J. B. Cavanagh, P. D. Lewis, W. F. Blakemore, and M. H. Kyu, Changes in cerebellar cortex in rats after portocaval anastomosis, J. Neurol. Sci., 15: 13–26 (1972).PubMedCrossRefGoogle Scholar
  37. 37.
    T. E. Starzl, L. J. Foep, C. G. Halgrimson, J. Hood, G. P. J. Schroter, F. N. Porter, and R. Weil, Fifteen years of clinical liver transplantation, Gastroenterology, 77: 370–382 (1979).Google Scholar
  38. 38.
    C. Lamar, Ammonia toxicity in rats: protection by a-metylglutamic acid, Toxicology and Applied Pharmacology, 17: 795–803 (1970).PubMedCrossRefGoogle Scholar
  39. 39.
    L. Chiosa, V. Niculescu, C. Biociocat,and C. Stancu, The protective action of N-acetyl and N-carbamyl derivatives of glutamic and aspartic acids against ammonia intoxication, Biochem. Pharmacol., 14: 1635–1643 (1965).Google Scholar
  40. 40.
    S. Kim, W. F. Paif, and P. Cohen, Ammonia intoxication in rats: protection by N-carbamyl-L-glutamate plus L-arginine, Proc. Natl. Acad. Sci., 69: 3530–3533 (1972).PubMedCrossRefGoogle Scholar
  41. 41.
    A. Nistri and A. Costanti, Pharmacological characterization of different types of GABA and glutamate receptors in vertebrates and invertebrates, Progress Neurobiology, 13: 117–235 (1981).CrossRefGoogle Scholar
  42. 42.
    E. Puil, Sglutamate: its interactions with spinal neurons, Brain Res., 228: 229–322 (1981).PubMedGoogle Scholar
  43. 43.
    D. F. Shafer and E. A. Jones, Hepatic encephalopathy and the y -aminobutyric acid neurotransmitter system. Lancet Jan., 18–20 (1982).Google Scholar
  44. 44.
    N. L. Zeneroli, E. Iuliano, G. Racagni, and M. Baraldi, Metabolism and brain uptake of Y-aminobutyric acid in galactosamine-induced hepatic encephalopathy in rats, J. Neurochem., 38: 1219–1222 (1982).PubMedCrossRefGoogle Scholar
  45. 45.
    A. Guidotti, D. I. Cheney, M. Trabucchi, M. Doteuchi, C. T. Wang, and R. A. Hawkins, Focussed microwave radiation: a technique to minimize post mortem changes of cyclic nucleotides, DOPA and choline and to preserve brain morphology, Neuropharmacology, 13: 1115–1122 (1974).PubMedCrossRefGoogle Scholar
  46. 46.
    G. A. R. Johnston, Physiologic pharmacology of GABA and its antagonists in the vertebrate nervous system, in: “GABA in Nervous System Function”, E. Roberts, T. N. Chase, and D. B. Tower, eds., 395–412, Raven Press, New York (1976).Google Scholar
  47. 47.
    R. A. Mac Donald and J. L. Barker, Anticonvulsant and anaesthetic barbiturates: Different postsynaptic actions in cultured mammalian spinal cord neurons: A common mode of anticonvulsant action, Brain Res., 167: 323–336 (1979).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • F. Moroni
    • 3
  • G. Lombardi
    • 1
  • G. Moneti
    • 3
  • D. Pellegrini
    • 1
  • C. Cortesini
    • 2
  1. 1.Departments of PharmacologyFirenzeItaly
  2. 2.Departments of SurgeryFirenzeItaly
  3. 3.The Mass-Spectrometry Centre of the Medical SchoolFirenzeItaly

Personalised recommendations