Indicators of Calcium and Calcium Fluxes in Muscle, Its Subcellular Systems, and in Model Membranes

  • J. David Johnson
  • Denise E. Robinson
  • Laura A. Wittenauer
  • Douglas A. Fugman


The fundamental role of calcium and calcium fluxes in the mediation and regulation of a wide variety of both intra- and intercellular events is now widely recognized. It participates and indeed regulates cellular events as seemingly diverse as cell shape, cell-cell communication, glandular secretion, neurotransmitter release, flagellar motions, and muscle contraction. Coincident with our increasing awareness of the role of Ca2+ in cellular function and dysfunction, there has been an increase in the number and sophistication of Ca2+ indicators to measure and accurately report Ca2+ and rapid Ca2+ fluxes as they occur in their many diverse biological systems.


Sarcoplasmic Reticulum Calcium Transient Calcium Flux Fluorescence Increase Single Muscle Fiber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, D. G., and Blinks, J. R. 1978. Calcium transients in aequorininjected frog cardiac muscle. Nature, 273: 509–513.PubMedCrossRefGoogle Scholar
  2. Allen, D. G., Blinks, J. R., and Prendergast, F. G. 1977. Aequorin luminescence: Relation of light emission to calcium concentration—A calcium-independent component. Science, 796: 996–998.CrossRefGoogle Scholar
  3. Baylor, S. M., Chandler, W. K., and Marshall, M. W. 1979. Arsenazo III signals in singly dissected frog twitch fibres. J. Physiol. (Lond.), 287: 23P–24 P.Google Scholar
  4. Blayney, L. O., Thomas, J., Muir, J., and Henderson, A. 1977. Critical réévaluation of murexide technique in the measurement of calcium transport by cardiac sarcoplasmic reticulum. Biochim. Biophys. Acta, 470: 128–133.CrossRefGoogle Scholar
  5. Blinks, J. R. 1978. Measurement of calcium ion concentrations with photoproteins. Ann. N.Y. Acad. Sci. 507: 71–85.CrossRefGoogle Scholar
  6. Carvalho, C. A. M., and Carvalho, A. P. 1977. Fluorimetric monitoring of calcium binding to sar-coplasmic reticulum membranes. Biochim. Biophys. Acta, 468: 21–30.PubMedCrossRefGoogle Scholar
  7. Caswell, A. H., and Hutchison, J. D. 1971a. Visualization of membrane bound cations by a fluorescent technique. Biochem. Biophys. Res. Commun., 42: 43–49.PubMedCrossRefGoogle Scholar
  8. Caswell, A. H., and Hutchison, J. D. 1971b. Selectivity of cation chelation to tetracyclines: Evidence for special conformation of calcium chelate. Biochem. Biophys. Res. Commun., 43: 625–630.PubMedCrossRefGoogle Scholar
  9. Caswell, A. H., and Warren, S. 1972. Observation of calcium uptake by isolated sarcoplasmic reticulum employing a fluroescent chelate probe. Biochem. Biophys. Res. Commun., 46: 1757–1763.PubMedCrossRefGoogle Scholar
  10. Cittadini, A., Scarpa, A., and Chance, B. 1971. Kinetic evidence for Ca2+ uptake by intact Ehrlich ascites tumor cells. FEBS Lett., 18: 98–102.PubMedCrossRefGoogle Scholar
  11. Dipolo, R. O., Requena, J., Brinley, F. J., Mullins, L. J., Scarpa, A., and Tiffert, T. 1976. Ionized calcium concentrations in squid axons. J. Gen. Physiol., 67: 433–467.PubMedCrossRefGoogle Scholar
  12. Fay, F. S., Shlexin, H. H., Granger, W. C., and Taylor, S. R. 1979. Aequorin luminescence during activation of single isolated smooth muscle cells. Nature, 250: 506–508.CrossRefGoogle Scholar
  13. Geier, G. 1968. Die Kineti der Murexid-Komplex Bildung mit Kationen verschiedenen Koordination scharakters. Eine untersuchung mittels der Temperatur sprung-Relaxations Methode. Helv. Chim. Acta, 51: 94–105.CrossRefGoogle Scholar
  14. Hallet, M., Schneider, A. S., and Carbone, E. 1972. Tetracycline fluorescence as calcium-probe for nerve membranes with some model studies using Erythrocyte ghosts. J. Membr. Biol., 10: 31–44.CrossRefGoogle Scholar
  15. Hastings, J. W., Mitchell, G., Mattingly, P. H., Blinks, J. R., and van Leeuwen, M. 1969. Response of aequorin bioluminescence to rapid changes in calcium concentration. Nature, 222: 1047–1050.PubMedCrossRefGoogle Scholar
  16. Jöbsis, F. F., and O’Connor, M. J. 1966. Calcium release and reabsorption in the sartorius muscle of the toad. Biochem. Biophys. Res. commun., 25: 246–252.PubMedCrossRefGoogle Scholar
  17. Johnson, J. D., and Schwartz, A. 1978. Dansylaziridine-labeled troponin C: A new fluorescent “physiological” probe for Ca2+ regulation by sarcoplasmic reticulum. J. Biol. Chem., 253: 5243–5246.PubMedGoogle Scholar
  18. Johnson, J. D., Collins, J. H., and Potter, J. D. 1978. Dansylaziridine-labeled troponin C. A fluorescent probe of Ca2+ binding to the Ca2+-specific regulatory sites. J. Biol. Chem., 253: 6451–6458.PubMedGoogle Scholar
  19. Johnson, J. D., Charlton, S. C., and Potter, J. D. 1979. A fluorescence stopped-flow analysis of Ca2+ exchange with troponin C. J. Biol. Chem., 254: 3497–3502.PubMedGoogle Scholar
  20. Kovács, L., Rios, E., and Schneider, M. F. 1979. Calcium transients and intramembrane charge movement in skeletal muscle fibres. Nature, 279: 391–396.PubMedCrossRefGoogle Scholar
  21. Leung, J. 1980. Liposomes: Effect of temperature on their mode of action on single frog skeletal muscle fibers. Biochim. Biophys. Acta, 597: 427–432.PubMedCrossRefGoogle Scholar
  22. Leung, J., and Putnam, S., 1977. Transporting an impermeable fluorence dye into frog skeletal muscle fibers using artificial liposomes, Proc. Int. Union Physiol. Sci., XIII: 441.Google Scholar
  23. Mela, L., and Chance, B. 1968. Spectrophotometric measurements of the kinetics of Ca2+ and Mn2+ accumulation in mitochondria. Biochemistry, 7: 4059–4063.PubMedCrossRefGoogle Scholar
  24. Michaylova, V., and Ilkova, P. 1971. Photometric determination of micro amounts of calcium with arsenazo III. Anal. Chim. Acta, 53: 194–198.CrossRefGoogle Scholar
  25. Neering, I. R., and Morgan, K. G. 1980. Use of aequorin to study Neering excitation-contraction coupling in mammalian smooth muscle. Nature, 288: 585–587.PubMedCrossRefGoogle Scholar
  26. Ogawa, Y., Harafuji, H., and Kurebayashi, N. 1980. Comparison of the characteristics of four me- tallochromic dyes as potential calcium indicators for biological experiments. J. Biochem. (Tokyo), 87: 1293–1303.Google Scholar
  27. Ohnishi, S. T. 1978. Characterization of the murexide method: Dual wavelength spectrophotometry of cations under physiological conditions. Anal. Biochem., 85: 165–179.PubMedCrossRefGoogle Scholar
  28. Ohnishi, T., and Ebashi, S. 1963. Spectrophotometrical measurement of instantaneous calcium binding of the relaxing factor of muscle. J. Biochem. (Tokyo), 54: 506–511.Google Scholar
  29. Ohnishi, T., and Ebashi, S. 1964. The velocity of calcium binding of isolated sarcoplasmic reticulum. J. Biochem. (Tokyo), 55: 599–603.Google Scholar
  30. Potter, J. D., and Gergely, J. 1974. Troponin, tropomyosin, and actin interactions in the Ca2+ reg¬ulation of muscle contraction. Biochemistry, 13: 2697–2703.PubMedCrossRefGoogle Scholar
  31. Potter, J. D., and Gergely, J. 1975. The calcium and magnesium binding sites on troponin and their role in the regulation of myofibrillar adenosine triphosphatase. J. Biol. Chem., 250:4628–4633.PubMedGoogle Scholar
  32. Ridgway, E. G., and Ashley, C. C. 1967. Calcium transients in single muscle fibers. Biochem. Biophys. Res. Commun., 29: 229–234.PubMedCrossRefGoogle Scholar
  33. Scarpa, A., Brinley, F. J., Tiffert, T., and Dubyak, G. R. 1978a. Metallochromic indicators of ionized calcium. Ann. N.Y. Acad. Sci., 307: 86–111.CrossRefGoogle Scholar
  34. Scarpa, A., Brinley, F. J., and Dubyak, G. 1978b. Antipyrylazo III, a “middle range” Ca2+ metal-lochromic indicator. Biochemistry, 17: 1378–1386.PubMedCrossRefGoogle Scholar
  35. Schuster, S. M., and Olson, M. S. 1974. Studies of the energy dependent uptake of divalent metal ions by beef heart mitochondria. J. Biol. Chem., 249: 7151–7158.PubMedGoogle Scholar
  36. Shimomura, O., Johnson, F. H., and Saiga, Y. 1963. Microdetermination of calcium by aequorin luminescence. Science, 140: 1339–1340.PubMedCrossRefGoogle Scholar
  37. Thomas, M. V. 1979. Arsenazo III forms 2:1 complexes with Ca and 1:1 complexes with Mg under physiological conditions. Biophys. J., 25: 541–548.PubMedCrossRefGoogle Scholar
  38. Venkatakrishnan, R., Leung, J., Mason, D. T., and Wikman-Coffelt, J. 1979. Liposome for the trans-port of an impermeable fluorescent dye into muscle fibers. Biochem. Med. 27: 209–214.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • J. David Johnson
    • 1
  • Denise E. Robinson
    • 1
  • Laura A. Wittenauer
    • 1
  • Douglas A. Fugman
    • 1
  1. 1.Department of Pharmacology and Cell BiophysicsUniversity of Cincinnati College of MedicineCincinnatiUSA

Personalised recommendations