Isolation of Cardiac Muscle Mitochondria: An Update

  • Mohammed A. Matlib
  • William Rouslin
  • Pal L. Vaghy
  • Arnold Schwartz


In cardiac muscle cells, mitochondria occupy about 40% of the total volume (Page and McCallister, 1973) and provide about 90% of the ATP required under normal aerobic conditions (Neely and Morgan, 1974). In addition to being the major source of ATP, mitochondria contain distinct Ca2+ influx and efflux systems (Carafoli, 1979), the role of which in cell function is still incompletely understood. The structure and function of mitochondria are known to be damaged in such disease conditions as myocardial ischemia (Jennings and Ganote, 1974; Rouslin, 1983; Rouslin and Millard, 1980, 1981; Sordahl and Stewart, 1980; Wood et al., 1979; Nagao et al., 1980) and heart failure (Lindenmayer et al., 1968, 1970, 1971; Lochner et al., 1968; Meerson et al., 1964; Rouslin et al., 1979; Schwartz and Lee, 1962; Wollenberger et al., 1963). A major thrust of research in this area has been the elucidation of mechanisms and factors responsible for mitochondrial damage and the design of pharmacological interventions to prevent cellular injury. In most of these studies, it is necessary to study the structure and function of mitochondria in vitro after isolation and purification.


Mitochondrial Protein Rabbit Heart Assay Medium Heart Mitochondrion Mitochondrial Pellet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bonting, S. L., Simon, K. A., and Hawkins, N. A. 1961. Studies on sodium-potassium-activated adenosine triphosphatase. 1. Quantitative distribution in several tissues of the cat. Arch. Biochem. Biophys., 95: 416–423.PubMedCrossRefGoogle Scholar
  2. Carafoli, E. 1979. The calcium cycle. FEBS Lett., 104: 1.PubMedCrossRefGoogle Scholar
  3. Chance, B., and Hagihara, B. 1960. Initiation of succinate oxidation in aged pigeon heart mitochondria. Biochem. Biophys. Res. Commun., 5: 1–5.CrossRefGoogle Scholar
  4. Edoute, Y., Kotze, J. C. N., and Lochner, A. 1979. Oxidative phosphorylation rate: An index for evaluation of mitochondrial function in myocardial ischemia. J. Mol. Cell. Cardiol., 77: 831–833.CrossRefGoogle Scholar
  5. Estabrook, R. W. 1967. Mitochondrial respiratory control and the polarographic measurement of ADP:O ratios. In: Methods in Enzymology, Volume 10, pp. 41–47. Ed. by Estabrook, R. W., and Pullman, M. E. Academic Press, New York.Google Scholar
  6. Jacobs, E. E., Jacob, M., Sanadi, D. R., and Bradley, L. B. 1956. Uncoupling of oxidative phosphorylation by cadmium ion. J. Biol. Chem., 225: 147–156.Google Scholar
  7. Jennings, R. B., and Ganóte, C. E. 1974. Structural changes in myocardium during acute ischemia. Circ. Res., 34/35(Suppl. III). 156–172.PubMedGoogle Scholar
  8. Lindenmayer, G. E., Sordahl, L. A., and Schwartz, A. 1968. Réévaluation of oxidative phosphorylation in cardiac mitochondria from normal animals and animals in heart failure. Circ. Res., 23: 439–450.PubMedCrossRefGoogle Scholar
  9. Lindenmayer, G. E., Harigaya, S., Bajusz, E., and Schwartz, A. 1970, Oxidative phosphorylation and calcium transport of mitochondria isolated from cardiomyopathic hamster hearts, J. Mol. Cell. Cardiol., 7: 249.CrossRefGoogle Scholar
  10. Lindenmayer, G. E., Sordahl, L. A., Harigaya, S., Allen, J. C., Besch, H. R., and Schwartz, A. 1971, Some biochemical studies on subcellular systems isolated from fresh recipient human cardiac tissue obtained during transplantation, Am. J. Cardiol., 27: 211.CrossRefGoogle Scholar
  11. Lochner, A., Opie, L. H., and Brink, A. J. 1968. A defective oxidative phosphorylation in hereditary myocardiopathy in Syrian hamster. Cardiovasc. Res., 2: 297–307.PubMedCrossRefGoogle Scholar
  12. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the phenol reagent. J. Biol. Chem., 193: 265–215.PubMedGoogle Scholar
  13. Matlib, M. A., Rebman, D., Ashraf, M., Rouslin, W., and Schwartz, A. 1981. Differential activities of putative subsarcolemmal and interfibrillar mitochondria from cardiac muscle. J. Mol. Cell. Cardiol., 75: 163–170.CrossRefGoogle Scholar
  14. Meerson, F. Z., Zaletayeva, T. A., Lagutchev, S. S., and Pshennikova, M. G. 1964. Structure and mass of mitochondria in the process of compensatory hyperfunction and hypertrophy of the heart. Exp. Cell Res., 56: 568–578.CrossRefGoogle Scholar
  15. Nagao, T., Matlib, M. A., Franklin, D., Millard, R. W., and Schwartz, A. 1980. Effects of diltiazem, a calcium antagonist, on regional myocardial function and mitochondria after brief coronary occlusion. J. Mol. Cell. Cardiol., 12: 29–43.PubMedCrossRefGoogle Scholar
  16. Neely, J. R., and Morgan, H. E. 1974. Relationship between carbohydrate and lipid metabolism and the energy balance of heart muscle. Annu. Rev. Physiol., 36: 413–459.PubMedCrossRefGoogle Scholar
  17. Page, E., and McCallister, L. P. 1973. Quantitative electron microscopic description of heart muscle cells. Am. J. Cardiol., 57: 172–181.CrossRefGoogle Scholar
  18. Palmer, J. W., Tandler, B., and Hoppel, C. L. 1977. Biochemical properties of subsarcolemmal and interfibrillar mitochondria isolated from rat cardiac muscle. J. Biol. Chem., 252: 8731–8739.PubMedGoogle Scholar
  19. Rouslin, W. 1975. Oxygen dependence of promitochondrial and cytoplasmic protein synthesis in the formation of electron transfer complexes III and IV in adapting bakers’ yeast. Arch. Biochem. Biophys., 765: 685–692.CrossRefGoogle Scholar
  20. Rouslin, W. 1983. Mitochondrial complexes I, II, III, IV, and V in myocardial ischemia and autolysis. Am. J. Physiol., 244: H743–H748.PubMedGoogle Scholar
  21. Rouslin, W., Cubicciotti, R. S., Edward, W. D., Matlib, M. A., Wilson, D. R., Hamrell, B. B., and Schwartz, A. 1979. Phosphorylative respiratory activity of mitochondria isolated from the left and right ventricles of rabbit hearts following partial pulmonary trunk occlusion. J. Mol. Cell. Cardiol., 11: 91–99.PubMedCrossRefGoogle Scholar
  22. Rouslin, W., and Millard, R. W. 1980. Canine myocardial ischemia: Defect in mitochondrial electron transfer complex I. J. Mol. Cell. Cardiol., 12: 639–645.PubMedCrossRefGoogle Scholar
  23. Rouslin, W., and Millard, R. W. 1981. Mitochondrial inner membrane enzyme defects in porcine myocardial ischemia. Am. J. Physiol., 240.H3O8–H313.Google Scholar
  24. Scarpa, A., Brinley, F. J., Jr., and Dubyak, G. 1978. Antipyrylazo III, a “middle range” Ca2+ metallochromic indicator. Biochemistry, 17: 1378–1386.PubMedCrossRefGoogle Scholar
  25. Schwartz, A., and Lee, K. S. 1962. Study of heart mitochondria and glycolytic metabolism in ex-perimentally induced cardiac failure. Circ. Res., 10: 321–332.PubMedCrossRefGoogle Scholar
  26. Sordahl, L. A., Johnson, C., Blailock, Z. R., and Schwartz, A. 1971. The mitochondrion. In: Methods in Pharmacology, Volume 1, pp. 247–286. Ed. by Schwartz, A. Appleton-Century-Crofts, New York.CrossRefGoogle Scholar
  27. Sordahl, L. A., and Stewart, M. L. 1980. Mechanisms(s) of altered mitochondrial calcium transport in acutely ischemic canine hearts. Circ. Res., 47: 814–820.PubMedCrossRefGoogle Scholar
  28. Srere, P. A. 1969. Citrate synthase. In: Methods in Enzymology, Volume 13, pp. 3–11. Ed. by Lowenstein, J. M. Academic Press, New York.Google Scholar
  29. Tomec, R., and Hoppel, C. 1975. Carnitine palmitoyltransferase in bovine fetal heart mitochondria. Arch. Biochem. Biophys., 170: 716–723.PubMedCrossRefGoogle Scholar
  30. Tzagoloff, A., Byington, K. H., and MacLennan, D. H. 1968. Studies on the mitochondrial adenosine triphosphatase system. J. Biol. Chem., 243: 2405–2412.PubMedGoogle Scholar
  31. Vaghy, P. L., Matlib, M. A., Szekeres, L., and Schwartz, A. 1981. Protective effects of verapamil and diltiazem against inorganic phosphate induced impairment of oxidative phosphorylation of isolated heart mitochondria. Biochem. Pharmacol., 30: 2603–2610.PubMedCrossRefGoogle Scholar
  32. Vaghy, P. L., Johnson, J. D., Matlib, M. A., Wang, T., and Schwartz, A. 1982. Selective inhibition of Na+-induced Ca2+ release from heart mitochondria by diltiazem and certain other Ca2+ antagonist drugs. J. Biol. Chem., 257: 6000–6002.PubMedGoogle Scholar
  33. Vercesi, A., Reynafaijee, B., and Lehninger, A. L. 1978. Stoichiometry of H+ ejection and Ca2+ uptake coupled to electron transport in rat heart mitochondria. J. Biol. Chem., 253: 6379–6385.PubMedGoogle Scholar
  34. Wollenberger, A., Kleitke, B., and Raabe, G. 1963. Some metabolic characteristics of mitochondria from chronically overloaded, hypertrophied hearts. Exp. Mol. Pathol., 2: 251–260.PubMedCrossRefGoogle Scholar
  35. Wood, J. H., Hanley, H. G., Entman, M. L., Hartley, C. J., Swain, J. A., Busch, U., Chang, C. H., Lewis, R. M., Morgan, W. J., and Schwartz, A. 1979. Biochemical and morphological correlates of acute experimental myocardial ischemia in the dog. Circ. Res., 44: 52–61.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Mohammed A. Matlib
    • 1
  • William Rouslin
    • 1
  • Pal L. Vaghy
    • 1
  • Arnold Schwartz
    • 1
  1. 1.Department of Pharmacology and Cell BiophysicsUniversity of Cincinnati College of MedicineCincinnatiUSA

Personalised recommendations