Applications of Nuclear Magnetic Resonance to the Study of Myocardial Metabolism and Pharmacology

  • P. M. Matthews
  • G. K. Radda


Since the first volume of this series appeared in 1971 with James Fisher’s discussion of the application of nuclear magnetic resonance (NMR) relaxation measurements to the investigation of the binding of small molecules to proteins, instrumental sensitivity and experimental techniques have improved tremendously. In 1974, high-resolution NMR spectra were obtained from phosphate-containing metabolites in whole muscle (Hoult et al., 1974). In subsequent years, many reports of metabolic studies using perfused organs and whole animals appeared. The area has been extensively reviewed (Gadian, 1982; Gadian and Radda, 1981; Gadian et al., 1980; Radda and Seeley, 1979; Garlick and Radda, 1979; Shulman et al, 1979; Burt et al., 1979; Hollis, 1979).


Nuclear Magnetic Resonance Nuclear Magnetic Resonance Spectrum Free Induction Decay Nuclear Magnetic Resonance Study Solenoidal Coil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ackerman, J. J. H., Grove, T. H., Wong, G. G. Gadian, D. G., and Radda, G. K. 1980. Mapping of metabolites in whole animals by 31P NMR using surface coils. Nature, 283: 167–170.PubMedCrossRefGoogle Scholar
  2. Ackerman, J. J. H., Gadian, D. G., Radda, G. K., and Wong, G. G. 1981. Observation of NMR signals with receiver coils tuned for other nuclides. The optimization of B0 homogeneity and a multi-nuclear chemical shift reference. J. Mag. Reson., 42: 493–500.Google Scholar
  3. Agris, P., and Campbell, I. D. 1982. Proton NMR studies of intact friend leukemia cells. Science, 276: 1325–1327.CrossRefGoogle Scholar
  4. Bailey, I., Gadian, D. G., Matthews, P. M., Radda, G. K., and Seeley, P. J. 1981a. Studies of metabolism in the isolated, perfused heart using 13C NMR. FEBS LETT., 123: 103–109.CrossRefGoogle Scholar
  5. Bailey, I., Radda, G. K., Williams, S. R., and Gadian, D. G. 1981b. The activity of phosphorylase in total global ischemia in the rat heart: A 31P NMR study. Biochem. J., 796: 171–178.Google Scholar
  6. Balaban, R. S., Gadian, D. G., and Radda, G. K. 1981. A 31P n. m. r. study of the rat kidney in vivo. Kidney Int., 20: 575–519.PubMedCrossRefGoogle Scholar
  7. Barany, M., Barany, K., Burt, C. T., Glonek, T., and Myers, T. C. 1975. Structural changes in myosin during contraction and the state of ADP in the intact frog muscle. J. Supramol. Struct., 3: 125–140.PubMedCrossRefGoogle Scholar
  8. Bartholdi, T., and Ernst, R. R. 1973. Fourier spectroscopy and the causality principle. J. Mag. Reson., 77: 9–19.Google Scholar
  9. Battersby, M. K., and Radda, G. K. 1976. The stereospecificity of the glucose 6-phosphate binding site of glycogen phosphorylase b. FEBS Lett., 72: 319–321.PubMedCrossRefGoogle Scholar
  10. Battersby, M. K., Garlick, P. B., Seeley, P. J., Sehr, P. A., and Radda, G. K. 1978. Phosphorus nuclear magnetic resonance studies in living tissue. In: Biomolecular Structure and Function, pp. 175–193. Ed. by Agris, P. F., Loeppky, R., and Sykes, B. Academic Press, New York.CrossRefGoogle Scholar
  11. Becker, E. D., Ferretti, J. A., and Gambhir, P. M. 1979. Selection of optimum parameters for pulse fourier transform nuclear magnetic resonance. Anal. Chem., 51: 1413–1420.CrossRefGoogle Scholar
  12. Bendel, P., Lai, C. M., and Lauterbur, P. C. 1980. 31P spectroscopic zeugmatography of phosphorus metabolites. J. Mag. Reson., 38: 343–356.Google Scholar
  13. Berden, J. S., Cullis, P. R., Hoult, D. I., McLaughlin, A. C., Radda, G. K., and Richards, R. E. 1974. Frequency dependence of 31P NMR linewidths in sonicated, phospholipid vesicles: Effects of chemical shift anisotropy. FEBS Lett., 46: 55–58.PubMedCrossRefGoogle Scholar
  14. Bracewell, R. 1965. The Fourier Transform and Its Applications. McGraw-Hill, New York.Google Scholar
  15. Brindle, K. M., Brown, F. F., Campbell, I. D., Grathwohl, C. A., and Kuchel, P. W. 1979. Application of spin-echo nuclear magnetic resonance to whole cell systems. Membrane transport. Biochem. J., 180: 37–44.PubMedGoogle Scholar
  16. Brown, F. F., Campbell, I. D., Kuchel, P. W., and Rabenstein, D. C. 1977. Human erythrocyte metabolism studies by 1H spin echo NMR. FEBS Lett., 82: 12–16.PubMedCrossRefGoogle Scholar
  17. Brown, T. R., Gadian, D. G., Garlick, P. B., Radda, G. K., Seeley, P. J., and Styles, P. 1978. Creatine kinase activities in skeletal and cardiac muscle measured by saturation transfer NMR. In: Frontiers of Biological Energetics: Electrons to Tissues, Volume 2, pp. 1341–1349. Ed. by Dutton, L., Leigh, J., and Scarpa, A. Academic Press, New York.Google Scholar
  18. Bryant, R. G. 1970. Potassium-39 nuclear magnetic resonance. Biochem. Biophys. Res. Commun., 40: 1162–1166.PubMedCrossRefGoogle Scholar
  19. Burt, C. T., Glonek, T., and Barany, M. 1976. Phosphorus-31 nuclear magnetic resonance detection of unexpected phosphodiesters in muscle. Biochemistry, 15: 4850–4853.PubMedCrossRefGoogle Scholar
  20. Burt, C. T., Cohen, S. M., and Barany, M. 1979. Analysis of intact tissue with 31P NMR. Annu. Rev. Biophys. Bioeng., 8: 1–25.PubMedCrossRefGoogle Scholar
  21. Busby, S. J. W., Gadian, D. G., Richards, R. E., and Seeley, P. J. 1978. Phosphorus nuclear magnetic studies of compartmentation in muscle. Biochem. J., 170: 103–114.PubMedGoogle Scholar
  22. Campbell, I. D., and Dobson, C. M. 1979. The application of high resolution NMR to biological systems. In: Methods of Biochemical Analysis, Volume 25, pp. 1–134. Ed. by Glick, D. John Wiley & Sons, New YorkGoogle Scholar
  23. Campbell, I. D., Dobson, C. M., Williams, R. J. P., and Xavier, A. V. 1973. Resolution enhancement of protein PMR spectra using the difference between a broadened and a normal spectrum. J. Mag. Reson., 11: 172–181.Google Scholar
  24. Canet, D., Levy, G. C., and Peat, I. R. 1975. Time saving in 13C spin-lattice relaxation measurements by inversion-recovery. J. Mag. Reson., 18: 199–204.Google Scholar
  25. Carr, H. Y., and Purcell, E. M. 1954. Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys. Rev., 94: 630–638.CrossRefGoogle Scholar
  26. Chalovich, J. M., and Bárány, M. 1980. Serine ethanolamine phosphate in avian muscular dystrophy: Mechanism of accumulation in dystrophic muscle and relationship to phospholipid synthesis. Arch. Biochem. Biophys199: 615–625.Google Scholar
  27. Cohen, S. M., and Burt, C. T. 1977. 31P nuclear magnetic relaxation studies of phosphocreatine in intact muscle: Determination of intracellular free magnesium. Proc. Natl. Acad. Sci. U.S.A., 74: 4271–4275.PubMedCrossRefGoogle Scholar
  28. Cohen, S. M., Ogawa, S., and Shulman, R. G. 1979a. 13C NMR studies of gluconeogenesis in rat liver cells: Utilization of labelled glycerol by cells from euthyroid and hyperthyroid rats. Proc. Natl. Acad. Sci. U.S.A., 76: 1603–1607.CrossRefGoogle Scholar
  29. Cohen, S. M., Shulman, R. G., and McLaughlin, A. C. 1979b. Effects of ethanol on alanine metabolism in perfused mouse liver studied by 13C NMR. Proc. Natl. Acad. Sci. U.S.A., 76: 4808–4812.PubMedCrossRefGoogle Scholar
  30. Cooper, J. W. 1976. The computer in Fourier transform NMR. In: Topics in Carbon-13 NMR Spectroscopy, Volume 2, pp. 392-433. Ed. by Levy, G. C. John Wiley & Sons, New York.Google Scholar
  31. Cope, F. W., and Damadian, R. 1970. Cell potassium by 39K spin-echo nuclear magnetic resonance. Nature, 228: 76–77.PubMedCrossRefGoogle Scholar
  32. Costa, J. L., Dobson, C. M., Kirk, K., Poulson, F. M., Valeri, C. R., and Vecchione, J. 1979. Studies of human platelets by 19-F and 31-P NMR. FEBS Lett., 99: 141–146.PubMedCrossRefGoogle Scholar
  33. Daniels, A. J., Williams, R. J. P., and Wright, P. E. 1976. Nuclear magnetic resonance studies of the adrenal gland and some other organs. Nature, 267: 321–322.CrossRefGoogle Scholar
  34. Dawson, M. J., Gadian, D. G., and Wilkie, D. R. 1977. Contraction and recovery of living muscle studied by 31P nuclear magnetic resonance. J. Physiol. (Lond.), 267: 703 - 735.Google Scholar
  35. Dawson, M. J., Gadian, D. G., and Wilkie, D. R. 1978. Muscular fatigue investigated by phosphorus nuclear magnetic resonance. Nature, 274: 861 - 866.PubMedCrossRefGoogle Scholar
  36. Dawson, M. J., Gadian, D. G., and Wilkie, D. R. 1979. Mechanical relaxation rate and metabolism studied in fatiguing muscle by phosphorous nuclear magnetic resonance. J. Physiol. ( Lond. ) 299: 465–484.Google Scholar
  37. Delayre, J. L., Ingwall, J. S., Malloy, C., and Fossel, E. T. 1981. Gated 23Na NMR images of an isolated perfused working rat heart. Science, 212: 935–936.PubMedCrossRefGoogle Scholar
  38. Doyle, D. D., Chalovich, J. M., and Barany, M. 1981. Natural abundance 13C NMR spectra of intact muscle. FEBS Lett., 131: 14–150.CrossRefGoogle Scholar
  39. Ernst, R. R., and Anderson, W. A. 1966. Application of Fourier transform spectroscopy to magnetic resonance. Rev. Sci. Instrum., 37: 93–102.CrossRefGoogle Scholar
  40. Ernst, R. R., and Morgan, R. E. 1973. Saturation effects in Fourier spectroscopy. Mol. Phys., 26: 49–74.CrossRefGoogle Scholar
  41. Evans, F. E. 1979. Phosphorus-31 nuclear magnetic resonance studies on relaxation parameters and line broadening of intracellular metabolites of HeLa cells. Arch. Biochem. Biophys., 193: 63–75.PubMedCrossRefGoogle Scholar
  42. Farrer, T. C., and Becker, E. D. 1971. Pulse and Fourier Transform NMR, Academic Press, New York.Google Scholar
  43. Fisher, J. J. 1971. Nuclear magnetic resonance as applied to pharmacology. In: Methods in Pharmacology, Volume 1, pp. 431–453. Ed. by Schwartz, A. Meredith, New York.Google Scholar
  44. Forsén, S., and Hoffman, R. A. 1963. Study of moderately rapid chemical exchange reactions by means of nuclear magnetic double resonance. J. Chem. Phys., 39: 2892–2901.CrossRefGoogle Scholar
  45. Forsén, S., and Hoffman, R. A. 1964. Exchange rates by nuclear magnetic multiple resonance. III. Exchange reactions in systems with several non-equivalent sites. J. Chem. Phys., 40:1189é1196.CrossRefGoogle Scholar
  46. Fossel, E. T., Morgan, H. E., and Ingwall, J. S. 1980. Measurements of changes in high-energy phosphates in the cardiac cycle by using 31P nuclear magnetic resonance. Proc. Natl. Acad. Sci. U.S.A., 77: 365–3658.CrossRefGoogle Scholar
  47. Freeman, R., and Hill, H. D. W. 1971. Fourier transform study of NMR spin-lattice relaxation by progressive saturation. J. Chem. Phys., 54: 3361–3311.Google Scholar
  48. Freeman, R., and Morris, G. 1979. Two-dimensional Fourier transform NMR. Bull. Mag. Resort., 7: 1–26.Google Scholar
  49. Gadian, D. G. 1982. Nuclear Magnetic Resonance and Its Applications to Living Systems. Oxford University Press, Oxford.Google Scholar
  50. Gadian, D. G., and Radda, G. K. 1981. N. m. r. studies of tissue metabolism. Annu. Rev. Biochem., 50: 69–84.PubMedCrossRefGoogle Scholar
  51. Gadian, D. G., and Robinson, F. N. H. 1979. Radiofrequency losses in N. M. R. experiments on electrically conducting samples. J. Mag. Reson., 34: 449–455.Google Scholar
  52. Gadian, D. G., Radda, G. K., Richards, R. E., and Seeley, P. J. 1980. 31P NMR in living tissue: The road from a promising to an important tool in biology. In: Biological Applications of Magnetic Resonance. Ed. by Schulman, R. G. Academic Press, New York.Google Scholar
  53. Gadian, D. G., Radda, G. K., Brown, T. R., Chance, E. M., Dawson, M. J., and Wilkie, D. R. 1981a. The activity of creatine kinase in frog skeletal muscle studied by saturation-transfer nuclear magnetic resonance. Biochem. J., 194: 215–228.PubMedGoogle Scholar
  54. Gadian, D., Radda, G. K., Ross, B., Hockaday, J., Bore, P., Taylor, D., and Styles, P. 1981b. Examination of a myopathy by phosphorus NMR. Lancet, 2: 774–775.PubMedCrossRefGoogle Scholar
  55. Garlick, P. B. 1979. Molecular Studies of Cardiac Metabolism. D. Phil. Thesis, University of Oxford, Oxford.Google Scholar
  56. Garlick, P. B., and Radda, G. K. 1979. NMR and its applications to metabolic studies. In: Techniques in Metabolic Research, pp. 1–24. Ed. by Pogson, C. Elsevier, Amsterdam.Google Scholar
  57. Garlick, P. B., Radda, G. K., Seeley, P. J., and Chance, B. 1977. Phosphorus NMR studies on perfused heart. Biochem. Biophys. Res. Commun., 74: 1256–1262.PubMedCrossRefGoogle Scholar
  58. Garlick, P. B., Radda, G. K., and Seeley, P. J. 1979. Studies of acidosis in the ischaemic heart by phosphorus nuclear magnetic resonance. Biochem. J., 184: 547–554.PubMedGoogle Scholar
  59. Gergely, J., and Maruyama, K. 1960. The binding of inorganic phosphate to myosin in the presence of adenosine triphosphate. J. Biol. Chem., 235: 3174–3176.PubMedGoogle Scholar
  60. Gillies, R. J., and Deamer, D. W. 1979. Intracellular pH: Methods and applications. Curr. Top. Bioeng., 9: 63–87.Google Scholar
  61. Gorden, R. E., Hanley, P., Shaw, D., Gadian, D. G., Radda, G. K., Styles, P., and Chan, L. 1980. Localisation of metabolites in animals using 31P “Topical Magnetic Resonance.” Nature, 287: 361–368.CrossRefGoogle Scholar
  62. Grove, T. H., Ackerman, J. J. H., Radda, G. K., and Bore, P. J. 1980. Analysis of rat heart in vivo by phosphorus nuclear magnetic resonance. Proc. Natl. Acad. Sci. U.S.A., 77: 299–302.PubMedCrossRefGoogle Scholar
  63. Gupta, R. K. 1977. A new look at the method of variable nutation angle for the measurement of spin- lattice relaxation times using Fourier transform NMR. J. Mag. Reson., 25: 231–235.Google Scholar
  64. Gupta, R. K., and Gupta, P. 1982. Direct observation of resolved resonances from intra- and extra-cellular sodium-23 in NMR studies of intact cells and tissues using dysprosium (III) tripolyphos- phate as paramagnetic shift reagent. J. Mag. Reson., 47: 344–350.Google Scholar
  65. Gupta, R. K., and Moore, R. D. 1980.31P NMR studies of intracellular free Mg2+ in intact frog skeletal muscle. J. Biol. Chem., 255: 3987–3993.Google Scholar
  66. Gupta, R. K., Benovic, J. L., and Rose, B. 1978. The determination of the free magnesium level in the human red blood cell by 31P NMR. J. Biol. Chem., 253: 6172–6176.PubMedGoogle Scholar
  67. Hahn, E. L. 1950. Spin echoes. Phys. Rev., 80: 580–594.CrossRefGoogle Scholar
  68. Hamilton, J. A., Cordes, E. H., and Glueck, C. J. 1979. Lipid dynamics in human low density li-poproteins and human aortic tissue with fibrous plaques: A study by high field 13C NMR spectroscopy. J. Biol. Chem., 254: 5435–5441.PubMedGoogle Scholar
  69. Hess, P., and Weingart, R. 1982. Free magnesium in cardiac and skeletal muscle measured with ion- selective micro-electrodes. J. Physiol. (Lond. ), 318: 14P–15 P.Google Scholar
  70. Hille, B. 1973. Potassium channels in myelinated nerve. Selective permeability to small cations. J. Gen. Physiol., 61: 669–686.PubMedCrossRefGoogle Scholar
  71. Hinshaw, W. W., Bottomley, P. A., and Holland, G. N. 1977. Radiographic thin-section image of the human wrist by nuclear magnetic resonance. Nature, 270: 122–123.CrossRefGoogle Scholar
  72. Hoffman, R. A., and Forsén, S. 1966. Transient and steady state overhauser experiments in the investigation of relaxation processes. Analysis between chemical exchange and relaxation. J. Chem. Phys., 45: 2049–2060.CrossRefGoogle Scholar
  73. Hollis, D. P., 1979. Nuclear magnetic resonance studies of cancer and heart disease. Bull. Mag. Reson., 1: 27–37.Google Scholar
  74. Hollis, D. P., Nunnally, R. L., Taylor, G. J., Weisfeldt, M. L., and Jacobus, W. E. 1978. Phosphorus NMR studies of heart physiology. J. Mag. Reson., 29: 319–330.Google Scholar
  75. Hoult, D. I. 1978. The NMR receiver: A description and analysis of design. Prog. NMR Spect., 12: 41–77.CrossRefGoogle Scholar
  76. Hoult, D. I., and Richards, R. E. 1975. Critical factors in the design of sensitive high resolution nuclear magnetic resonance spectrometers. Proc. R. Soc. Lond. [Phys. ] 344: 311–340.CrossRefGoogle Scholar
  77. Hoult, D. I., and Richards, R. E. 1976. The signal-to-noise ratio of the nuclear magnetic resonance experiment. J. Mag. Reson., 24: 71–85.Google Scholar
  78. Hoult, D. I., Busby, S. J. W., Gadian, D. G., Radda, G. K., Richards, R. E., and Seeley, P. J. 1979. Observation of tissue metabolites using 31P nuclear magnetic resonance. Nature, 252: 285–287.CrossRefGoogle Scholar
  79. Jacobus, W. E., Taylor, G. J., Hollis, D. P., and Nunnally, R. L. 1977. Phosphorus nuclear magnetic resonance of perfused working rat hearts. Nature, 265: 156–158.CrossRefGoogle Scholar
  80. Jacobus, W. E., Pores, H., Lucas, S. K., Kallman, C. H., Weisfeldt, M. L., and Flaherty, J. T. 1982. The role of intracellular pH in the control of normal and ischaemic myocardial contractility: A 31Pn. m. r. and mass spectrometry study. In: Intracellular pH: Its Measurement, Regulation, and Utilization in Cellular Functions, pp. 537–565. Ed. by Nuccitelli, R., and Deamer, D. W. Alan R. Liss, New York.Google Scholar
  81. Jones, D. W., and Child, T. F. 1976. NMR in flowing systems. Adv. Mag. Reson., 8: 123–148.Google Scholar
  82. Karplus, M. 1959. Contact electron-spin coupling of nuclear magnetic moments. J. Chem. Phys., 30: 11–15.CrossRefGoogle Scholar
  83. Kauppinen, R. A., Hiltunen, J. K., and Hassinen, I. E. 1980. Subcellular distribution of phosphagens in the rat heart. FEBS. Lett., 112: 273–276.PubMedCrossRefGoogle Scholar
  84. Lapidot, A., and Irving, C. S. 1979. Comparative in vivo 15N NMR study of cell wall components of five gram-positive bacteria. Biochemistry, 18: 704–714.PubMedCrossRefGoogle Scholar
  85. Lauterbur, P. C. 1973. Image formation by induced local interactions: Examples employing nuclear magnetic resonance. Nature, 242: 190–191.CrossRefGoogle Scholar
  86. Lauterbur, R. C., Dias, M. H. M., and Rudin, A. 1978. Augmentation of tissue water proton Ti rates by in vivo addition of paramagnetic ions. In: Frontiers of Biological Energetics: Electrons to Tissues, Volume 2, pp. 1341–1349. Ed. by Dutton, L., Leigh, J., and Scarpa, A. Academic Press, New York.Google Scholar
  87. Lettvin, J., and Sherry, A. D. 1977. Gd (TTHA): An aqueous carbon-13 relaxation reagent. J. Mag. Reson., 28: 459–461.Google Scholar
  88. Levitt, M. H., and Freeman, R. 1979. NMR population inversion using a composite pulse. J. Mag. Reson., 33: 473–476.Google Scholar
  89. Levy, G. C., and Lichter, R. L. 1979. Nitrogen-15 Nuclear Magnetic Resonance Spectroscopy. John Wiley & Sons, New York.Google Scholar
  90. Levy, G. C., and Peat, I. R. 1975. The experimental approach to accurate carbon-13 spin-lattice relaxation measurements. J. Mag. Reson., 18: 500–521.Google Scholar
  91. Magnusson, J. R., and Magnusson, N. S. 1973. NMR studies of sodium and potassium in various biological tissues. Ann. N. Y. Acad. Sci., 204: 297–309.CrossRefGoogle Scholar
  92. Matthews, P. M., Bland, J. L., Gadian, D. G., and Radda, G. K. 1981. The steady-state rate of ATP synthesis in the isolated perfused rat heart measured by 31P n. m. r. saturation transfer. Biochem. Biophys. Res. Commun., 103: 1052–1058.PubMedCrossRefGoogle Scholar
  93. Matthews, P. M. Williams, S. R., Seymour, A.-M., Schwartz, A., Dube, G., Gadian, D. G., and Radda, G. K. 1982a. A 31P n. m. r. study of some metabolic and functional effects of the inotropic agents epinephrine and ouabain and the ionophore R02-2985 (X537A) in the isolated, perfused rat heart. Biochim. Biophys. Acta, 720: 163–171.PubMedCrossRefGoogle Scholar
  94. Matthews, P. M., Bland, J. L., Gadian, D. G., and Radda, G. K. 1982b. A 31P- NMR saturation transfer study of the regulation of creatine kinase in rat heart. Biochim. Biophys. Acta, 721: 312–320.PubMedCrossRefGoogle Scholar
  95. McDonald, G. G., and Leigh, J. L. 1973. A new method for measuring longitudinal relaxation times. J. Magn. Reson., 9: 358–362.Google Scholar
  96. Mehring, M. 1974. High Resolution and NMR Spectroscopy in Solids. NMR—Basic Principles and Progress, Volume 11. Springer-Verlag, Berlin.Google Scholar
  97. Meiboom, S., and Gill, D. 1958. Modified spin-echo method for measuring nuclear relaxation times. Rev. Sci. Instrum., 29: 688–691.CrossRefGoogle Scholar
  98. Meyer, R. A., Kushmerick, M. J., and Brown, T. R. 1982. Application of 31P NMR spectroscopy to the study of striated muscle metabolism. Am. J. Physiol., 77: C1–C11.Google Scholar
  99. Momsen, G., Rose, Z. B., and Gupta, R. K. 1979. A reappraisal of 31P NMR studies indicating enzyme complexation in red blood cells. Biochem. Biophys. Res. Commun., 91: 651–657.PubMedCrossRefGoogle Scholar
  100. Moon, R. B., and Richards, J. H. 1973. Determination of intracellular pH by phosphorus nuclear magnetic resonance. J. Biol. Chem., 248: 7276–7218.PubMedGoogle Scholar
  101. Mullins, L. G., and Moore, R. D. 1960. The movement of thallium ions in muscle. J. Gen. Physiol., 43: 759–773.PubMedCrossRefGoogle Scholar
  102. Navon, G., Ogawa, S., Schulman, R. G., and Yamane, T. 1977. 31P Nuclear magnetic resonance studies of Ehrlich ascites tumor cells. Proc. Natl. Acad. Sci. U.S.A., 74: 87–91.Google Scholar
  103. Navon, G., Navon, R., Schulman, R. G., and Yamane, T. 1978. Phosphate metabolites in lymphoid, Friend erythroleukemia, and HeLa cells observed by high resolution 31P nuclear magnetic res-onance. Proc. Natl. Acad. Sci. U.S.A., 75: 891–895.PubMedCrossRefGoogle Scholar
  104. Neely, J. R., Liebermeister, H., Battersby, E. J., and Morgan, H. E. 1967. Effect of pressure de-velopment on oxygen consumption by the isolated rat heart. Am. J. Physiol., 212: 804–814.PubMedGoogle Scholar
  105. Newman, R. J., Bore, P. J., Chan, L., Gadian, D. G., Styles, P., Taylor, D., and Radda, G. K. 1982. Nuclear magnetic resonance studies of forearm muscle in Duchenne dystrophy. Br. Med. J., 234: 1072–1074.CrossRefGoogle Scholar
  106. Njus, D., Sehr, P. A., Radda, G. K., Ritchie, G. A., and Seeley, P. J. 1978. Phosphorus-31 nuclear magnetic resonance studies of active proton translocation in chromaffin granules. Biochemistry, 17: 4337–4343.PubMedCrossRefGoogle Scholar
  107. Nunnally, R. L., and Bottomly, P. A. 1981. Assessment of pharmacological treatment of myocardial infarction by phosphorus-31 n. m. r. with surface coils. Science, 211: 177–180.PubMedCrossRefGoogle Scholar
  108. Nunnally, R. L., and Hollis, D. P. 1979. ATP compartmentation in living hearts: A 31P NMR saturation transfer study. Biochemistry, 18: 3642–3646.PubMedCrossRefGoogle Scholar
  109. Ogawa, S., Rottenberg, H., Brown, T. R., Shulman, R. G., Castillo, C. L., and Glynn, P. 1978. High resolution 31P nuclear magnetic resonance study of rat liver mitochondria. Proc. Natl. Acad. Sci. U.S.A., 75: 1796–1800.PubMedCrossRefGoogle Scholar
  110. Ogino, T., Arata, Y., Fujiwara, S., Shoun, H., and Beppu, T. 1978. Use of proton correlation spec-troscopy in the study of living cells. Anaerobic metabolism of Escherichia coli. J. Mag. Reson., 31: 523–526.Google Scholar
  111. Otto way, J. H., and Mowbray, J. 1977. The role of compartmentation in the control of glycolysis. Curr. Top. Cell. Reg., 12: 107–208.Google Scholar
  112. Pieper, G. M., Todd, G. L., Wu, S. T., Salhany, J. M., Clayton, F. C., and Eliot, R. S. 1980. At-tenuation of myocardial acidosis by propranolol during ischemic arrest and reperfusion of isolated, perfused hearts as determined by 31P nuclear magnetic resonance spectroscopy. Cardiovasc. Res., 14: 646–653.PubMedCrossRefGoogle Scholar
  113. Pitkethly, R. H. 1979. Part I I Thesis, University of Oxford, Oxford.Google Scholar
  114. Poole-Wilson, P. A. 1978. Measurement of myocardial intracellular pH in pathological states. J. Mol. Cell. Cardiol., 10: 511–526.PubMedCrossRefGoogle Scholar
  115. Pykett, I. L. 1982. NMR imaging in medicine. Sci. Am., 246 (5): 54–71.CrossRefGoogle Scholar
  116. Rabenstein, D. L., and Nakashima, T. T. 1979. Spin-echo Fourier transform nuclear magnetic res-onance spectroscopy. Anal. Chem., 51. 1465A–1474A.Google Scholar
  117. Radda, G. K., and Seeley, P. J. 1979. Recent studies on cellular metabolism by nuclear magnetic resonance. Annu. Rev. Physiol., 41: 149–169.CrossRefGoogle Scholar
  118. Randle, P. J., and Tubbs, P. K. 1979. Carbohydrate metabolism of the heart. In: Handbook of Physiology, Section II, Volume 1, pp. 805-844. Ed. by Berne, R. M. American Physiological Society, Bethesda.Google Scholar
  119. Roberts, J. K. M., Wade-Jardetsky, N., and Jardetsky, O. 1981. Intracellular pH measurements by 31P n. m. r. Influence of factors other than pH on chemical shifts. Biochemistry, 20: 5389–5394.PubMedCrossRefGoogle Scholar
  120. Ross, B. D., Radda, G. K., Gadian, D. G., Rocker, G., Esiri, M., and Falconer, J. 1981. Examination of a case of suspected McCardle’s syndrome by 31P n. m. r. N. Engl. J. Med., 304: 1338–1342.PubMedCrossRefGoogle Scholar
  121. Rusznyak, I., Gyorgy, L., Omal, S., and Millner, T. 1968. On some potassium-like qualities of the thallium ion. Experientia, 24: 809–810.PubMedCrossRefGoogle Scholar
  122. Salhany, J. M., Yamane, T., Shulman, R. G., andOgawa, S. 1975. High resolution 31P nuclear magnetic resonance studies of intact yeast cells. Proc. Natl. Acad. Sci. U.S.A., 72: 4966–4970.PubMedCrossRefGoogle Scholar
  123. Salhany, J. M., Pieper, G. M., Wu, S., Todd, G. L., Clayton, F. C., and Eliot, R. S. 1979.31P nuclear magnetic resonance measurements of cardiac pH in perfused guinea-pig hearts. J. Mol. Cell Cardiol., 11: 601–610.Google Scholar
  124. Sass, M., and Ziessow, D. 1977. Error analysis for optimised inversion recovery spin-lattice relaxation measurements. J. Mag. Reson., 25: 263–276.Google Scholar
  125. Schaeffer, J., Stejskal, E. O., and Beard, C. F. 1975. Carbon-13 nuclear magnetic resonance analysis of metabolism in soybeans labelled by 13C02. Plant Physiol., 55: 1048–1053.CrossRefGoogle Scholar
  126. Schaeffer, J., Stejskal, E. O., and McKay, R. A. 1979. Cross-polarisation NMR of 15N labelled soy-beans. Biochem. Biophys. Res. Commun., 88: 274–280.CrossRefGoogle Scholar
  127. Schaeffer, J., Skokut, T. A., Stejskal, E. O., McKay, R. A., and Varner, J. E. 1981. Estimation of protein turnover in soybean leaves using magic angle double cross-polarization nitrogen-15 NMR. J. Biol. Chem., 256: 11574–11579.Google Scholar
  128. Shaw, D. 1976. Fourier Transform NMR Spectroscopy, Elsevier, Amsterdam.Google Scholar
  129. Shporer, M., and Civan, M. M. 1977, State of water and alkali cations within the intracellular fluids: The contribution of NMR spectroscopy. Curr. Top. Membr. Transport, 9: 1–69.CrossRefGoogle Scholar
  130. Shulman, R. G., Brown, T. R., Ugurbil, K., Ogawa, S., Cohen, S. M., and den Hollander, J. A. 1979. Cellular applications of 31P and 13C nuclear magnetic resonance. Science, 205: 160–166.PubMedCrossRefGoogle Scholar
  131. Singer, S. T. 1978. NMR diffusion and flow measurements and an introduction to spin phase graphing. J. Phys. E. Sciolnstrum., 11: 281–291.CrossRefGoogle Scholar
  132. Srere, P. A. 1981. Protein crystals as a model for mitochondrial matrix proteins. Trends Biochem. Sci., 6: 4–7.CrossRefGoogle Scholar
  133. Sternlicht, H., Kenyon, G. L., Packer, E. L., and Sinclair, J. 1971. Carbon-13 nuclear magnetic resonance studies of heterogeneous systems. Amino acids bound to cationic exchange resins. J. Am. Chem. Soc., 93: 199–208.CrossRefGoogle Scholar
  134. Styles, P., Grahtwohl, C., and Brown, F. F. 1979. Simultaneous multinuclear NMR by alternate scan recording of 31P and 13C spectra. J. Mag. Reson., 35: 329–36.Google Scholar
  135. Thulborn, K. R., du Boulay, G., and Radda, G. K. 1981. In vivo non-invasive measurements of energy metabolism and pH by 31P n. m. r. in experimental stroke correlated with cerebral oedema. J. Cereb. Blood Flow Metab., 1: 580–581.Google Scholar
  136. Ugurbil, K., Brown, T. R., den Hollander, J. A., Glynn, P., and Shulman, R. G. 1978a. High resolution 13C nuclear magnetic resonance studies of glucose metabolism in E. Coli. Proc. Natl. Acad. Sci. U.S.A., 75: 3742–3746.CrossRefGoogle Scholar
  137. Ugurbil, K., Shulman, R. G., and Brown, T. R. 1979. High resolution 31P and 13C nuclear magnetic resonance studies of Escherichia coli cells in vivo. In: Biological Application of Magnetic Resonance, pp. 537–589. Ed. by Shulman, R. G. Academic Press, New York, London.Google Scholar
  138. Van Putte, K. 1970. Elimination of Hi inhomogeneity and spin-spin relaxation in the determination of spin-lattice relaxation times. J. Mag. Res., 2: 174–180.Google Scholar
  139. Veech, R. L., Lawson, J. W. R., Cornell, N. W., and Krebs, H. A. 1979. Cytosolic phosphorylation potential. J. Biol. Chem., 254: 6538–6547.PubMedGoogle Scholar
  140. Waugh, J. S., and Wang, C. H. 1967. Multiple spin echoes in dipolar solids. Phys. Rev., 162: 208–216.CrossRefGoogle Scholar
  141. Wehrli, F. W., and Wirthli, T. 1976. Interpretation of 13 C NMR spectra. Hayden & Son, London, New York.Google Scholar
  142. Witcofski, R. L., Karstaedt, N., and Partain, C. L. (Eds.). 1982. NMR Imaging. Bowman Gray School of Medicine, Winston-Salem, NC.Google Scholar
  143. Wong, G. G. 1981. D. Phil. Thesis, University of Oxford, Oxford.Google Scholar
  144. Wu, S. T., Pieper, G. M., Salhany, J. M., and Eliot, R. S. 1981. Measurement of free magnesium in perfused and ischaemic arrested heart muscle. A quantitative 31P n. m. r. and multiequilibria analysis. Biochemistry, 20: 7399–7403.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • P. M. Matthews
    • 1
  • G. K. Radda
    • 1
  1. 1.Department of BiochemistryUniversity of OxfordOxfordEngland

Personalised recommendations