Isolation of Canine Cardiac Sarcolemmal Vesicles

  • Larry R. Jones
  • Henry R. BeschJr.


Isolation and characterization of sarcolemmal membrane fragments from the heart has been a goal of several research laboratories for some time (Wollenberger and Will, 1978). This is because of the fundamental importance of the sarcolemma in maintaining the electrophysiological and contractile properties of the heart by regulating transmembrane fluxes of the inotropically active cations Na+, K+, and Ca2+ between intracellular and extracellular compartments. Both purity and morphological form of the isolated membranes are equally important considerations in any isolation scheme for cardiac sarcolemma (Besch et al., 1976). In analogy to results first observed with cardiac sarcoplasmic reticulum membrane preparations, it seems highly advantageous to isolate sarcolemmal membrane fragments from the heart in the form of tightly sealed vesicles so that not only enzymic activity but also active and passive transport of ions can be measured in the same membrane preparation.


ATPase Activity Sarcoplasmic Reticulum Free Base Sarcolemmal Membrane Sarcoplasmic Reticulum Vesicle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Besch, H. R., Jr., Jones, L. R., and Watanabe, A. M. 1976. Intact vesicles of canine cardiac sarcolemma. Evidence from vectorial properties of Na+, K+-ATPase. Circ. Res., 39: 586–595.PubMedCrossRefGoogle Scholar
  2. Besch, H. R., Jr., Jones, L. R., Fleming, J. W., and Watanabe, A. M. 1977. Parallel unmasking of latent adenylate cyclase and (Na+, K+)-ATPase activities in cardiac sarcolemmal vesicles. A new use of the channel forming ionophore alamethicin. J. Biol. Chem., 252: 7905–7908.PubMedGoogle Scholar
  3. Caroni, P., and Carafoli, E. 1980. An ATP-dependent Ca2+-pumping system in dog heart sarcolemma. Nature, 283: 165–161.CrossRefGoogle Scholar
  4. Harris, W. D., and Popat, P. 1954. Determination of the phosphorus content of lipids. J. Am. Oil Chem. Soc., 31: 124–127.CrossRefGoogle Scholar
  5. Heller, M., and Harary, I. 1977. Plasma membranes from cardiac cells in culture. Enzymatic radio- iodination, evaluation of preparations and properties of the sarcolemma. Biochim. Biophys. Acta, 467: 29–43.PubMedCrossRefGoogle Scholar
  6. Jones, L. R., Besch, H. R., and Watanabe, A. M. 1977. Monovalent cation stimulation of Ca2+ uptake by cardiac membrane vesicles. Correlation with stimulation of Ca2+-ATPase activity. J. Biol. Chem., 252: 3315–3323.PubMedGoogle Scholar
  7. Jones, L. R., Besch, H. R., Jr., and Watanabe, A. M. 1978a. Regulation of the calcium pump of cardiac sarcoplasmic reticulum. Interactive roles of potassium and ATP on the phosphoprotein intermediate of the (K+,Ca2+)-ATPase. J. Biol. Chem., 253: 1643–1653.PubMedGoogle Scholar
  8. Jones, L. R., Phan, S. H., and Besch, H. R., Jr. 1978b. Gel electrophoretic and density gradient analysis of the (K+, Ca2+)-ATPase and the (Na+, K+)-ATPase activities of cardiac membrane vesicles. Biochem. Biophys. Acta, 574: 294–309.Google Scholar
  9. Jones, L. R., Besch, H. R., Jr., Fleming, J. W., McConnaughey, M. M., and Watanabe, A. M. 1979. Separation of vesicles of cardiac sarcolemma from vesicles of cardiac sarcoplasmic reticulum. Comparative biochemical analysis of component activities. J. Biol. Chem., 254: 530–539.PubMedGoogle Scholar
  10. Jones, L. R., Maddock, S. W., and Besch, H. R., Jr. 1980. Unmasking effect of alamethicin on the Na+, K+-ATPase, β-adrenergic receptor coupled adenylate cyclase, and cAMP-dependent protein kinase activities of cardiac sarcolemmal vesicles. J. Biol. Chem., 255: 9971–9980.PubMedGoogle Scholar
  11. Jones, L. R., Maddock, S. W., and Hathaway, D. R. 1981. Membrane localization of myocardial type II cyclic AMP-dependent protein kinase activity. Biochim. Biophys. Acta, 641: 242–253.PubMedCrossRefGoogle Scholar
  12. Lad, P. J., and White, A. A. 1979. Effect of alamethicin, gramicidin S and melittin upon the particulate guanylate cyclase from rat lung. Biochim. Biophys. Acta, 570: 198–09.PubMedCrossRefGoogle Scholar
  13. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the folin phenol reagents. J. Biol. Chem., 193: 265–215.PubMedGoogle Scholar
  14. Pitts, B. J. R. 1979. Stoichimetry of sodium-calcium exchange in cardiac sarcolemmal vesicles. Coupling to the sodium pump. J. Biol. Chem., 254. 6232–6235.PubMedGoogle Scholar
  15. Reeves, J. P., and Sutko, J. L. 1979. Sodium-calcium ion exchange in cardiac membrane vesicles. Proc. Natl. Acad. Sci. U.S.A., 76: 590–594.PubMedCrossRefGoogle Scholar
  16. Wollenberger, A., and Will H. 1978. Protein kinase-catalyzed membrane phophorylation and its possible relationship to the role of calcium in the adrenergic regulation of cardiac contraction. Life Sci., 22: 1159–1178.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Larry R. Jones
    • 1
    • 2
  • Henry R. BeschJr.
    • 1
    • 2
  1. 1.Department of MedicineKrannert Institute of CardiologyIndianapolisUSA
  2. 2.Department of Pharmacology and ToxicologyIndiana University School of MedicineIndianapolisUSA

Personalised recommendations