• Carl L. Keen
  • Bo Lönnerdal
  • Lucille S. Hurley
Part of the Biochemistry of the Elements book series (BOTE, volume 3)


Manganese, although widely distributed in the biosphere, occurs in only trace amounts in animal tissues, in which concentrations of 2–4 μg/g (<0.06 μM) are considered high. Despite these low concentrations, manganese is essential for several biological functions, but its precise biochemical roles have not been delineated. Although manganese has long been known to be a constituent of animal tissues (Bertrand and Medigreceanu, 1913), it was first shown to be required by animals when Kemmerer and coworkers (1931) and Orent and McCollum (1931) demonstrated poor growth in mice and abnormal reproduction in rats fed diets devoid of the element. Today it is known that manganese deficiency results in a wide variety of structural physiological defects. Alternatively, an excess of the element can also result in severe pathologies, particularly of the central nervous system. In this chapter, current knowledge of the biochemistry of manganese is reviewed; where possible, studies are emphasized in which the biochemistry of manganese has been studied in relation to the intact animal.


Human Milk Pyruvate Carboxylase Manganese Superoxide Dismutase Phosphoenolpyruvate Carboxykinase Manganese Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrams, E., Lassiter, J. W., Miller, W. J., Neathery, M. W., Gentry, R. P., Scarth, R. D., 1976. Absorption as a factor in manganese homeostasis, J. Anim. Sci. 42: 630–636.Google Scholar
  2. Agrawal, B. B., Goldstein, I. J., 1968. Protein-carbohydrate interaction. VII. Physical chemical studies on concanavalin A, the hemagglutinin of Jack Bean, Arch. Biochem. Biophys. 124: 218–229.Google Scholar
  3. Amdur, M. O., Norris, L. C., Heuser, G. F., 1946. The lipotrophic action of manganese, Biol. Chem. 164: 783–784.Google Scholar
  4. Archibald, F. S., Fridovich, I., 1982. The scavenging of superoxide radical by manganous complexes: In vitro, Arch. Biochem. Biophys. 214: 452–463.Google Scholar
  5. Ash, D. E., Schramm, V. L., 1982. Determination of free bound manganese ( II) in hepatocytes from fed fasted rats, J. Biol. Chem. 257: 9261–9264.Google Scholar
  6. Ash, D. E., Schramm, V. L., 1982. Determination of free bound manganese ( II) in hepatocytes from fed fasted rats, J. Biol. Chem. 257: 9261–9264.Google Scholar
  7. Ballard, F. J., Hanson, R. W., 1967. Phosphoenolypyruvate carboxykinase pyruvate carboxylase in developing rat liver, Biochem. J. 104: 866–871.Google Scholar
  8. Baly, D. L., Currey, D. L., Keen, C. L. Hurley, L. S., 1984a. Effect of manganese deficiency on insulin secretion carbohydrate homeostasis, J. Nutr.: in press.Google Scholar
  9. Baly, D. L., Keen, C. L., Curry, D. L., Hurley, L. J., 1984b. Effects of manganese deficiency on carbohydrate metabolism, in Proceedings of the Fifth Symposium on Trace Element Metabolism in Man Animals. Aberdeen, Scotland, June 29-July 4, 1984, in press.Google Scholar
  10. Banta, G., Markesbery, W. R., 1977. Elevated manganese levels associated with dementia extrapyramidal signs, Neurology 27: 213–216.PubMedGoogle Scholar
  11. Baquer, N. Z., Hothersall, J. S., Sochor, M., McLean, P., 1982. Bio-inorganic regulation of pathways of carbohydrate lipid metabolism. 1. Effect of iron manganese on the enzyme profile of pathways of carbohydrate metabolism in adipose tissue during development, Enzyme 27: 61–68.Google Scholar
  12. Barbeau, A., Inoue, N., Cloutier, T., 1975. Role of manganese in dystonia, in Advances in Neurology, Vol. 14, R. Elridge S. Fahn (eds.), Raven Press, New York, pp. 339–352.Google Scholar
  13. Barak, A., Keefer, R., Tuma, D., 1971. The possible role of manganese in hepatic lipid transport, Nutr. Rep. Int. 3: 243–246.Google Scholar
  14. Barnes, W. M., 1978. DNA sequencing by partial ribosubstitution, J. Molec. Biol. 119: 83–99.Google Scholar
  15. Bates, I., Chan, W., Mahood, A., Rennert, O. M., 1983. Human milk, bovine milk formula ligand-bound manganese transport in rat, Fed. Proc. 42: 817.Google Scholar
  16. Beach, R. S., Gershwin, M. E., Hurley, L. S., 1982. Zinc, copper, manganese in immune function experimental oncogenesis, Nutr. Cancer 3: 172–191.Google Scholar
  17. Bell, L., Hurley, L. S., 1973. Ultrastructural effects of manganese deficiency in liver, heart, kidney pancreas of mice, Lab. Invest. 29: 723–736.Google Scholar
  18. Bellotti, R. M., Ravera, M. Abbona, C., 1956. Studio in vivo dell’ attiveta di alcuna sali de manganese sur metabolism intermedio degii idrati di carbonio, Arch. Maragliano Patol. Clin. 12: 683–690.Google Scholar
  19. Benedict, C., Kett, J., Porter, J., 1965. Properties of farnesyl pyrophosphate synthetase of pig liver, Arch. Biochem. Biophys. 110: 611–621.Google Scholar
  20. Bentle, L. A., Lardy, H. A., 1976. Interactions of anions divalent metal ions with phosphoenolpyruvate carboxykinase, J. Biol. Chem. 251: 2916–2921.Google Scholar
  21. Bertinchamps, A. J., Miller, S. T., Cotzias, G. C., 1966. Interdependence of routes excreting manganese, Am. J. Physiol. 211: 217–224.Google Scholar
  22. Bertrand, G., Medigreceanu, M. F., 1913. Recherches sur la presence du manganese dans la serie animale, Ann. de L’inst. Pasteur 27: 282–288.Google Scholar
  23. Bond, J. S., Failla, M. L., Unger, D. F., 1983. Elevated manganese concentration arginase activity in livers of streptozotocin-induced diabetic rats, J. Biol. Chem. 258: 8004–8009.Google Scholar
  24. Bonilla, E., 1978. Increased GABA content in caudate nucleus of rats after chronic manganese chloride administration, J. Neurochem. 22: 551–552.CrossRefGoogle Scholar
  25. Bonilla, E., 1980. L-tyrosine hydroxylase activity in the rat brain after chronic oral administration of manganese chloride, Neurobehav. Toxicol. 2: 37–41.Google Scholar
  26. Bonilla, E., Salazar, E., Villasmil, J., Villalobos, R., 1982. The regional distribution of manganese in the normal human brain, Neurochem. Res. 7: 221–227.Google Scholar
  27. Borg, D. C., Cotzias, G. C., 1962. Interaction of trace metals with phenothiazine drug deriv-atives. I–III. Proc. Natl. Acad. Sci. 48: 617–652.Google Scholar
  28. Borrebaeck, C. A. K., Lonnerdal, B., Etzler, M. E., 1981. Metal ion content of Dolichos biflorus lectin effect of divalent cations on lectin activity, Biochemistry 20: 4119–4122.PubMedCrossRefGoogle Scholar
  29. Brink worth, R. J., Hanson, R. W., Fullin, F. A., Schramm, V. L., 1981. Mn2+-sensitive insensitive forms of phosphoenolpyruvate carboxykinase ( GTP ), J. Biol. Chem. 256: 10795–10802.Google Scholar
  30. Britton, A. A., Cotzias, G. C., 1966. Dependence of manganese turnover on intake, Am. J. Physiol. 203: 203–206.Google Scholar
  31. Chan, W.-Y., Bates, J. M., Jr., Rennert, O. M., 1982. Comparative studies of manganese binding in human breast milk, bovine milk infant formula, J. Nutr. 112: 642–651.PubMedGoogle Scholar
  32. Clegg, M. S., Keen, C. L., Lonnerdal, B., Hurley, L. S., 1982. Analysis of trace elements in animal tissues. III. Determination of manganese by graphite furnace atomic absorption spec-trophotometry, Biol. Trace Element Res. 4: 145–156.Google Scholar
  33. Cohen, G., Heikkila, R. E., 1974. The generation of hydrogen peroxide, superoxide radical, hydroxyl radical by 6-hydroxydopamine, dialuric acid related cytotoxic agents, J. Biol. Chem. 249: 2447–2452.Google Scholar
  34. Cohn, M., Hughes, T. R., 1962. Nuclear magnetic resonance spectra of adenosine di triphosphate. II. Effect of complexing with divalent ions, J. Biol. Chem. 237: 176–181.Google Scholar
  35. Comens, P., 1956. Manganese depletion as an etiologic factor in hydralazine, Am. J. Med. 20: 944–945.Google Scholar
  36. Cotzias, G. C., Bertinchamps, J., 1960. Transmanganin, the specific manganese-carrying protein of human plasma, J. Clin. Invest. 39: 979.Google Scholar
  37. Cotzias, G. C., Greenough, J. J., 1958. The high specificity of the manganese pathway through the body, J. Clin. Invest. 37: 1298–1305.Google Scholar
  38. Cotzias, G. C., Horiuchi, K., Fuenzalida, S., Mena, I., 1968. Chronic manganese poisoning: Clearance of tissue manganese concentrations with persistence of the neurological picture, Neurology 18: 376–382.Google Scholar
  39. Cotzias, G. C., Papavasiliou, P. S., Mena, I., Tang, L. C., Miller, S. T., 1974. Manganese catecholamines, in Advances in Neurology, Vol. 5, F. H. McDowell A. Barbeau (eds.), Raven Press, New York, pp. 235–243.Google Scholar
  40. Cotzias, G. C., Tang, L. C., Miller, S. T., Sladic-Simic, D., Hurley, L. S., 1972. A mutation influencing the transportation of manganese, L-dopa, L-tryptophan, Science 176: 410–412.Google Scholar
  41. Curran, G. L., Azarnoff, D. L., 1961. Effect of certain transition elements on cholesterol biosynthesis, Fed. Proc. 20:Suppl. 10, 109–111.Google Scholar
  42. Davies, W. T., Nightingale, R., 1975. The effects of phytate on intestinal absorption secretion of zinc, whole body retention of zinc, copper, iron manganese in rats, Br. J. Nutr. 34: 243–258.Google Scholar
  43. de Rosa, G., Keen, C. L., Leach, R. M., Hurley, L. S., 1980. Regulation of superoxide dismutase activity by dietary manganese, J. Nutr. 110: 795–804.PubMedGoogle Scholar
  44. Deskin, R., Bursian, S. J., Edens, F. W., 1980. An investigation into the effects of manganese other divalent cations on tryrosine hydroxylase activity, Neurotoxicology 2: 75–81.Google Scholar
  45. Doisy, E., Jr., 1972. Micronutrient controls of biosynthesis of clotting proteins cholesterol, in Trace Substances in Environmental Health, Vol. VI, D. Hemphill (ed.), University of Missouri, Columbia, pp. 193–199.Google Scholar
  46. Donaldson, J., LaBella, F. S., Gesser, D., 1980. Enhanced autooxidation of dopamine as a possible basis of manganese neurotoxicity, Neurotoxicology 2: 53–64.Google Scholar
  47. Donaldson, J., McGregor, D., Labella, F., 1982. Manganese neurotoxicity: a model for free radical mediated neurodegeneration? Can. J. Physiol. Pharmacol. 60: 1398–1405.Google Scholar
  48. Donaldson, J., St. Pierre, T., Minnich, J. L., Barbeau, A., 1973. Determination of Na+, K+, Mg2+, Zn2+ Mn2+ in rat brain regions, Can. J. Biochem. 51: 87–92.Google Scholar
  49. Dubick, M. A., Keen, C. L., 1983. Tissue trace elements lung superoxide dismutase activity in mice exposed to ozone, Toxicol. Lett, 17: 355–360.Google Scholar
  50. Dreosti, I. E., Manuel, S. J., Buckley, R. A., 1982. Superoxide dismutase (EC manganese the effect of ethanol in adult fetal rats, Br. J. Nutr. 48: 205–210.Google Scholar
  51. Engel, R. W., Price, N. O., Miller, R. F., 1967. Copper, manganese, cobalt, molybdenum balance in pre-adolescent girls, J. Nutr. 92: 197–204.Google Scholar
  52. Erway, L., Hurley, L. S., Fraser, A., 1966. Neurological defect: Manganese in phenocopy and prevention of a genetic abnormality of inner ear, Science 152: 1766–1768.Google Scholar
  53. Erway, L., Hurley, L. S., Fraser, A., 1970. Congenital ataxia otolith defects due to manganese deficiency in mice, J. Nutr. 100: 643–654.PubMedGoogle Scholar
  54. Erway, L., Fraser, A., Hurley, L. S., 1971. Prevention of congenital otolith defect in Pallid mutant mice by manganese supplementation. Genetics 67: 97–108.PubMedGoogle Scholar
  55. Erway, L. C., Mitchell, S. E., 1973. Prevention of otolith defect in pastel mink by manganese supplementation, J. Hered. 64: 111–119.PubMedGoogle Scholar
  56. Everson, G. J., Shrader, R. E., 1968. Abnormal glucose tolerance in manganese-deficient guinea pigs, J. Nutr. 94: 89–94.PubMedGoogle Scholar
  57. Falchuk, K. H., Hardy, C., Ulpino, L., Vallee, B. L., 1978. RNA metabolism, manganese, RNA polymerases of zinc-sufficient zinc-deficient Euglena gracilis, Proc. Natl. Acad. Sci. 75: 4175–4179.Google Scholar
  58. Flanagan, H. W., Huber, R. E., 1978. Cooperative binding of Mn2+ non-cooperative binding of Mg2+ to β-galactosidase (E. coli), Biochem. Biophys. Research Comm. 82: 1079–1083.Google Scholar
  59. Fletcher, K., Myant, N., 1961. Effect of some cofactors on the synthesis of fatty acids cholesterol in cell-free preparations of rat liver, J. Physiol. ( Lond. ) 155: 498–505.Google Scholar
  60. Foradori, A., Dinamarca, M. G., 1972. Transferrina o transmanganina definicion de laproteina de transporte de manganeso en el plasma humano, Rev. Med. Chile 100: 148–153.Google Scholar
  61. Fore, H., Morton, R. A., 1952. Microdetermination of manganese in biological material by a modified catalytic method, Biochem. J. 51: 594–598.Google Scholar
  62. Fridovich, I., 1975. Superoxide dismutases, Ann. Rev. Biochem. 44: 147–159.Google Scholar
  63. Friedmann, N., Rasmussen, H., 1970. Calcium, manganese hepatic gluconeogenesis, Biochem. Biophys. Acta 222: 41–52.Google Scholar
  64. Fukunaga, M., Mizuguchi, Y., 1982. The effects of propidium on nuclear mitochondrial mutation induced in yeast by manganese, Chem. Pharm. Bull. 30: 2889–2893.Google Scholar
  65. Fung, C. H., Mildvan, A. J., 1973. Interaction of pyruvate with pyruvate carboxylase pyruvate kinase as studied by paramagnetic effects on 13C relaxation rate, Biochemistry 12: 620–629.PubMedCrossRefGoogle Scholar
  66. Gallup, W. D., Norris, L. C., 1939. The amount of manganese required to prevent perosis in the chick, Poultry Sci. 18: 76–82.Google Scholar
  67. Gianutsos, G., Murray, M. I., 1982. Alterations in brain dopamine GAB A following inorganic or organic manganese administration, Neurotoxicology 3: 75–82.PubMedGoogle Scholar
  68. Gibbons, R. A., Dixon, S. N., Hallis, K., Russell, A. M., Sanson, B. F., Symonds, H. W., 1976. Manganese metabolism in cows goats, Biochem. Biophys. Acta. 444: 1–10.Google Scholar
  69. Gibson, R. S., Scythes, C. A., 1982. Trace element intakes of women, Br. J. Nutr. 48: 241–248.Google Scholar
  70. Goldberg, N. D., Haddox, M. K., 1977. Cyclic GMP metabolism involvement in biological regulation, Ann. Rev. Biochem. 46: 823–896.Google Scholar
  71. Grankvist, K., Marklund, S. L., Taljedal, I-B., 1981. CuZn-superoxide dismutase, Mn-super- oxide dismutase, catalase glutathione peroxidase in pancreatic islets other tissues in the mouse, Biochem. J. 199: 393–398.Google Scholar
  72. Greger, J. L., Balinger, P., Abernathy, R. P., Bennett, O. A., Peterson, T., 1978. Calcium, magnesium, phosphorus, copper manganese balance in adolescent females, Am. J. Clin. Nutr. 31: 117–121.Google Scholar
  73. Gruden, N., 1977. Suppression of transduodenal manganese transport by milk diet supplemented with iron, Nutr. Metab. 21: 305–309.Google Scholar
  74. Guthrie, B. E., Robinson, M. F., 1977. Daily intakes of manganese, copper, zinc cadmium by New Zealand women, Br. J. Nutr. 38: 55–63.Google Scholar
  75. Hart, D. A., 1978. Evidence that manganese inhibits an early event during stimulation of lymphocytes by mitogens, Exp. Cell Res. 113: 139–150.Google Scholar
  76. Hassanein, M., Ghaleb, H. A., Haroun, E. A., Hegazy, M. R., Khayyal, M. A. H., 1966. Chronic manganism: Preliminary observations on glucose tolerance serum proteins, Br. Ind. Med. 23: 67–70.Google Scholar
  77. Hidiroglou, M., 1979. Manganese in ruminant nutrition: A review, Can. J. Anim. Sci. 59: 217–236.Google Scholar
  78. Hidiroglou, M., 1980. Zinc, copper manganese deficiencies the ruminant skeleton: A review, Can. J. Anim. Sci. 60: 579–590.Google Scholar
  79. Hidiroglou, M., Shearer, D. A., 1976. Concentration of manganese in the tissues of cycling anestrous ewes, Can. J. Comp. Med. 40: 306–309.Google Scholar
  80. Hirsch-Kolb, H., Kolb, H. J., Greenberg, D. M., 1971. Nuclear magnetic resonance studies of manganese binding of rat liver arginase, J. Biol. Chem. 246: 395–401.Google Scholar
  81. Huang, K-P., Chen, C. H-J., Robinson, J. C., 1978. Glycogen synthesis by choriocarcinoma cells in vitro, J. Biol. Chem. 253: 2596–2603.Google Scholar
  82. Hughes, E. R., Miller, S. T., Cotzias, G. C., 1966. Tissue concentrations of manganese adrenal function, Am. J. Physiol. 211: 207–210.Google Scholar
  83. Hurley, L. S., 1981. Teratogenic aspects of manganese, zinc, copper nutrition, Physiol. Rev. 61: 249–295.Google Scholar
  84. Hurley, L. S., Bell, L. T., 1974. Genetic influence on response to dietary manganese deficiency in mice, J. Nutr. 104: 133–137.PubMedGoogle Scholar
  85. Hurley, L. S., Everson, G. J., 1963. Influence on timing of short-term supplementation during gestation on congenital abnormalities of manganese-deficient rats, J. Nutr. 79: 23–27.PubMedGoogle Scholar
  86. Hurley, L. S., Wooley, D. E., Rosenthal, F., Timiras, P. S., 1963. Influence of manganese on susceptibility of rats to convulsions. Am. J. Physiol. 204: 493–496.Google Scholar
  87. Hurry, V. J., Gibson, R. S., 1982. The zinc, copper manganese status of children with malabsorption syndromes inborn errors of metabolism, Biol. Trace Element Res. 4: 157–174.Google Scholar
  88. Huang, K., Robinson, J. C., 1977. Effect of manganese(ous) sulfate on activity of human placental glucose-6-phosphate dependent form of glycogen synthase, J. Biol. Chem. 252: 3240–3244.Google Scholar
  89. Hysell, D. K., Moore, W., Stara, J. F., Miller, R., Campbell, K. I., 1974. Oral toxicity of methylcyclopentadienyl manganese tricarbonyl ( MMT) in rats, Environ. Res. 7: 158–168.Google Scholar
  90. Jeng, A. Y., Shamoo, A. E., 1980. Isolation of a Ca2+-carrier from calf heart inner mitochondrial membrane, J. Biol. Chem. 255: 6897–6903.Google Scholar
  91. Joselow, M. M., Tobias, E., Koehler, R., Coleman, S., Bogden, J., Gause, D., 1978. Manganese pollution in the city environment its relationship to traffic density, Am. J. Pub. Health 68: 557–560.Google Scholar
  92. Katz, S., Tenenhouse, A., 1973. The relation of adenyl cyclase to the activity of other ATP utilizing enzymes phosphodieterase in preparations of rat brain; mechanism of stimulation of cyclic AMP accumulation of adrenalin, ovabain Mn+ +, Br. J. Pharmacol. 48: 516–526.Google Scholar
  93. Kawamura, R., Ikuta, H., Fukuzumi, S., Yamada, R., Tsubaki, S., Kodama, T., Kurata, S., 1941. Intoxication by manganese in well water, Kisasato Arch. Exp. Med. 18: 145–169.Google Scholar
  94. Keen, C. L., Clegg, M. S., Lonnerdal, B., Hurley, L. S., 1983a. Whole blood manganese as an indicator of body manganese status. New Engl. J. Med. 308: 1230.Google Scholar
  95. Keen, C. L., Fransson, G. B., Lonnerdal, B., 1984a. Supplementation of milk with iron bound to lactoferrin using weanling mice. II Effects on tissue manganese, zinc copper, J. Pediat. Gastroenterol, Nutr. 3: 256–261.Google Scholar
  96. Keen, C. L., Baly, D. L., Lonnerdal, B. 1984b. Metabolic effects of high doses of manganese in rats, Biol. Trace Element Res. In press.Google Scholar
  97. Keen, C. L., Tamura, T., Lonnerdal, B., Hurley, L. S., Halsted, C. H., 1983b. Effect of chronic ethanol feeding on the activity of superoxide dismutase in monkeys, Am. J. Clin. Nutr. 35: 836.Google Scholar
  98. Kemmerer, A. R., Elvehjem, C. A., Hart, E. B., 1931. Studies on the relation of manganese to the nutrition of the mouse, J. Biol. Chem. 92: 623–630.Google Scholar
  99. King, B. D., Lassiter, J. W., Neathery, M. N., Miller, W. J., Gentry, R. P., 1980. Effect of lactose, copper iron on manganese retention tissue distribution in rats fed dextrose-casein diets, J. Anim. Sci. 50: 452–458.Google Scholar
  100. Kirchgessner, M., Heiseke, D., 1978. Arginase-Aktiuitat in der leber washsender ratten bei Mn-mangel, Int. Z. Vit. Em. Forschung. 48: 75–78.Google Scholar
  101. Kirchgessner, M., Schwarz, F. J., Roth-Maier, D. A., 1981. Changes in the metabolism (retention, absorption, excretion) of copper, zinc, manganese in gravidity lactation, in: Trace Element Metabolism in Man Animals (TEMA-4), J. McC Howell, J. M. Gawthorne, C. L. White (eds.), Australian Academy of Sciences, Canberra, pp. 85–88.CrossRefGoogle Scholar
  102. Klimis-Tavantzis, D. J., Leach, R. M., Kris-Etherton, P. M., 1983. The effect of dietary manganese deficiency on cholesterol lipid metabolism in the Wistar rat in the genetically hypercholesterolemic RICO rat, J. Nutr. 113: 328–338.PubMedGoogle Scholar
  103. Lai, J. C. K., Leung, T. K. C., Lim, L., 1981. Brain regional distribution of glutamic acid decarboxylase, choline acetyltransferase acetylcholinesterase in the rat: Effect of chronic manganese chloride administration after two years, J. Neurochem. 3: 1443–1448.Google Scholar
  104. Lamirande, E. D., Plaa, G. L., 1979. Dose time relationships in manganese-bilirubin cholestasis, Toxicol. App. Pharmacol. 49: 257–263.Google Scholar
  105. Laskey, J. W., Rehnberg, G. L., Hein, J. F., Carter, S. D., 1982. Effects of chronic manganese (Mn304) exposure on selected reproductive parameters in rats, J. Toxicol. Environ. Health 9: 677–687.Google Scholar
  106. Leach, R. M., 1971. Role of manganese in mucopolysaccharide metabolism, Fed. Proc. Fed. Am. Soc. Exp. Biol. 30: 991–994.Google Scholar
  107. Leach, R. M., Muenster, A. M., Wein, E. M., 1969. Studies on the role of manganese in bone formation. II. Effect upon chrondroitin sulfate synthesis in chick epiphyseal cartilage, Arch. Biochem. Biophys. 133: 22–28.Google Scholar
  108. Lehmann, B. H., Hansen, J. D. L., Warren, P. J., 1971. The distribution of copper, zinc manganese in various regions of the brain other tissues of children with protein-calorie malnutrition, Br. J. Nutr. 26: 197–202.Google Scholar
  109. Lis, H., Sharon, N., 1981. Lectins in higher plants, in The Biochemistry of Plants, A. Marcus (ed.), Vol. 6, Academic Press, New York, pp. 371–447.Google Scholar
  110. Lönnerdal, B., Borrebaeck, C. A. K., Etzler, M. E., Errson, B., 1983c. Dependence on cations for the binding activity of lectins as determined by affinity electrophoresis, Biochem. Biophys. Res. Commun., 115: 1069–1074.Google Scholar
  111. Lönnerdal, B., Keen, C. L., Ohtake, M., Tamura, T., 1983a. Iron, zinc, copper, manganese in infant formulas, Am. J. Dis. Child., 137: 433–437.Google Scholar
  112. Lönnerdal, B., Keen, C. L., Hurley, L. J., 1984. Manganese binding proteins in human cow’s milk, Am. J. Clin. Nutr., in press.Google Scholar
  113. Lönerdal, B., Keen, C. L., Ontake, M., Tamura, T., 1983a. Iron, zinc, copper, manganese in infant formulas, Am. J. Dis. Child., 137: 433–437.Google Scholar
  114. Lönnerdal, B., Keen, C. L., Hurley, L. J., 1984. Manganese binding proteins in human cow’s milk, Am. J. Clin. Nutr., in press.Google Scholar
  115. Lönnerdal, B., Keen, C. L., Hurley, L. S., 1983b. Manganese binding in human milk cow’s milk—an effect on bioavailability, Fed. Proc. 42: 926.Google Scholar
  116. Luckney, T. D., Venugopal, B., 1977. Protein-metal interactions, in Metal Toxicity in Mammals, Vol. I, Plenum, New York, pp. 120–123.Google Scholar
  117. Lyon, M. F., 1953. Absence of otoliths in the mouse: An effect of the pallid mutant, J. Genet. 51: 638–650.Google Scholar
  118. Lyons, M., Insko, W. M., 1937. Chondrodystrophy in the chick embryo produced by manganese deficiency in the diet of the hen. Ky. Agric. Exp. Station Bull. No. 371.Google Scholar
  119. MacDonald, M. J., Bentle, L. A., Lardy, H. A., 1978. P-enolpyruvate carboxykinase fer- roactivator, distribution, the influence of diabetes starvation, J. Biol. Chem. 253: 116–124.Google Scholar
  120. Mahoney, J. P., Small, W. J., 1968. Studies on manganese. III. The biological half-life of radiomanganese in man factors which effect this half life, J. Clin. Invest. 47: 643–653.Google Scholar
  121. Mangnall, D., Giddings, A. E. B., Clark, R. G., 1976. Studies of gluconeogenesis in rat liver using a once-through perfusion technique. Effects of manganese ions, Int. J. Biochem. 7: 293–299.Google Scholar
  122. Matrone, G., Hartman, R. H., Clawson, A. J., 1959. Manganese-iron antagonism in the nutrition of rabbits baby pigs, J. Nutr. 67: 309–317.PubMedGoogle Scholar
  123. Maynard, L. S., Cotzias, G. C., 1955. The partition of manganese among organs intracellular organelles of the rat, J. Biol. Chem. 214: 489–495.Google Scholar
  124. McCoy, J. H., Kenney, M. A., Gillham, B., 1979. Immune response in rats fed marginal, adequate high intakes of manganese, Nutr. Rep. Int. 19: 165–172.Google Scholar
  125. McEuen, A. R., 1981. Manganese metalloproteins manganese-activated enzymes, in Inorganic Biochemistry, H. A. O. Hill (ed.), Royal Society of Chemistry, Burlington House, London, pp. 249–282.CrossRefGoogle Scholar
  126. McLeod, B. E., Robinson, M. F., 1972. Metabolic balance of manganese in young women, Br. J. Nutr. 27: 221–227.Google Scholar
  127. McNatt, M. L., Fisher, F. M., Elders, M. J., Kilgore, B. S., Smith, W. G., Hughes, E. R., 1976. Uridine diphosphate xylosyltransferase activity in cartilage from manganese-deficient chicks, Biochem. J. 160: 211–216.Google Scholar
  128. Meinel, B., Bode, J. C., Koenig, W., Richter, F. W., 1979. Contents of trace elements in the human liver before birth, Biol. Neonate 36: 225–232.Google Scholar
  129. Mena, I., 1981. Manganese, in Disorders of Mineral Metabolism, F. Bronner J. W. Coburn (eds.), Academic Press, New York, pp. 233–270.Google Scholar
  130. Mena, I., Court, J., Fuenzalida, S., Papavasiliou, P. J., Cotzias, G. C., 1970. Modification of chronic manganese poisoning: Treatment with L-Dopa or 5-OH tryptophane, New Engl. J. Med. 282: 5–10.Google Scholar
  131. Mildvan, A. S., 1970. Metals in enzyme catalysis, in The Enzymes, Vol. II, P. D. Boyer (ed.), Academic Press, New York, pp. 445–536.Google Scholar
  132. Miller, S. T., Cotzias, G. C., Evert, H. A., 1975. Control of tissue manganese: Initial absence sudden emergence of excretion in the neonatal mouse, Am. J. Physiol. 229: 1080–1084.Google Scholar
  133. Morgan, W. W., Huffman, R. D., 1976. The effect of chronic manganese intoxication on the content turnover of rat brain catecholamines, Anat. Rec. 184: 484.Google Scholar
  134. Morrison, J. F., Ebner, K. E., 1971. Studies on galactosyltransferase: Kinetic investigations with glucose as the galactosyl group acceptor, J. Biol. Chem. 246: 3985–3998.Google Scholar
  135. National Academy of Sciences, 1980. Manganese, in Mineral Tolerance of Domestic Animals, National Academy Press, Washington, pp. 290–303.Google Scholar
  136. Neff, N. H., Barrett, R. E., Costa, E., 1969. Selective depletion of caudate nucleus dopamine serotonin during chronic manganese dioxide administration to squirrel monkeys, Experientia 15: 1140–1141.CrossRefGoogle Scholar
  137. Niccolai, N., Tiezzi, E., Valensin, G., 1982. Manganese ( II) as magnetic relaxation probe in the study of biomechanisms of biomacromolecules, Chem. Rev. 82: 359–384.Google Scholar
  138. Oberley, L. W., Buettner, G. R., 1979. Role of superoxide dismutase in cancer: A review, Cancer Res. 39: 1141–1149.Google Scholar
  139. O’Dell, B. L., Campbell, B. J., 1971. Trace elements: Metabolism metabolic function, in Comprehensive Biochemistry, Vol. 21, M. Florkin E. H. Stotz (eds.), American Elsevier, New York, pp. 179–266.Google Scholar
  140. Orent, E. R., McCollum, E. V., 1931. Effects of deprivation of manganese in the rat, J. Biol. Chem. 92: 651–678.Google Scholar
  141. Orthofer, R., Kubicek, C. P., Rohr, M., 1979. Lipid levels manganese deficiency in citric acid producing strains or Aspergillus niger. FEMS Microbiol. Lett. 5: 403–406.Google Scholar
  142. Paddock, G. V., Heindell, H. C., Salser, W., 1974. Deoxysubstitution in RNA by RNA polymerase in vitro: A new approach to nucleotide sequence determinations, Proc. Nat. Acad. Sci. USA 71: 5017–5021.Google Scholar
  143. Papavasiliou, P. S., 1978. Manganese the extrapyramidal system, in Electrolytes Neuropsychiatry Disorders, P. A. Alexander (ed.), SP Medical Scientific, New York, pp. 187–225.Google Scholar
  144. Papavasiliou, P. S., Kutt, H., Miller, S. T., Rosal, V., Wang, Y. Y., Aronson, R. B., 1979. Seizure disorders trace metals: Manganese tissue levels in treated epileptics, Neurology 29: 1466–1473.Google Scholar
  145. Papavasiliou, P. S., Miller, S. T., Cotzias, G. C., 1966. Role of liver in regulating distribution excretion of manganese, Am. J. Physiol. 211: 211–216.Google Scholar
  146. Papavasiliou, P. S., Miller, S. T., Cotzias, G. C., 1968. Functional interactions between biogenic amines, 3’,5’, cyclic AMP manganese, Nature 220: 74–75.PubMedCrossRefGoogle Scholar
  147. Paynter, D. J., 1980. Changes in activity of the manganese superoxide dismutase enzyme in tissues of the rat with changes in dietary manganese, J. Nutr. 110: 437–447.PubMedGoogle Scholar
  148. Pignatari, F. J., 1932. Glicimia et lipemia nella intossicazione de manganese, Folia Med. 18: 484–500.Google Scholar
  149. Rabinovitch, M., Destefano, M. J., 1973. Macrophage spreading in vitro. II. Manganese other metals as inducers or as cofactors for induced spreading, Exp. Cell Res. 79: 423–430.Google Scholar
  150. Rao, C. N., Rao, B. S. N., 1982. Copper, manganese cobalt balances in Indian adult men estimation of daily requirement of copper manganese, Nutr. Rep. Inter. 26: 1113–1121.Google Scholar
  151. Robinson, G. A., Butcher, R. W., Sutherland, E. W., 1971. in Cyclic AMP Academic Press, New York, p. 72.Google Scholar
  152. Roby, M. J., Vann, K. L., Freeland-Graves, J. H., Shorey, R. L., 1982. Plasma liver cholesterol in the manganese-deficient rat, Fed. Proc. 41: 786.Google Scholar
  153. Rognstad, R., 1981. Manganese effects on gluconeogenesis, J. Biol. Chem. 256: 1608–1610.Google Scholar
  154. Rorsman, P. Hellman, B., 1983. The interaction between manganese calcium fluxs in pancreatic β-cells, Biochem. J. 210: 307–314.Google Scholar
  155. Rubenstein, A. H., Levin, N. W., Elliott, G. A., 1962. Manganese-induced hypoglycemia, Lancet ii: 1348 — 1351.Google Scholar
  156. Schafer, D. F., Stephenson, D. V., Barak, A. J., Sorrell, M. F., 1974. Effects of ethanol on the transport of manganese by small intestine of the rat, J. Nutr. 104: 101–104.PubMedGoogle Scholar
  157. Schneeman, B. O., Lonnerdal, B., Keen, C. L., Hurley, L. S., 1983. Zinc copper in rat bile pancreatic fluid: Effects of surgery, J. Nutr. 113: 1165–1168.Google Scholar
  158. Schramm, V. L., 1982. Metabolic regulation: Could Mn2+ be involved? Trends Biochem. Sci. 7: 369–371.Google Scholar
  159. Schramm, V. L., Fullin, F. A., Zimmerman, M. D., 1981. Kinetic studies of the interaction of substrates, Mn2+, Mg2+ with the Mn2+-sensitive -insensitive forms of phosphoen-olpyruvate carboxykinase, J. Biol. Chem. 256: 10803–10808.Google Scholar
  160. Schroeder, H. A., Balassa, J. J., Tipton, I. H., 1966. Essential trace metals in man: Manganese, a study in homeostasis, J. Chronic Dis. 19: 545–571.Google Scholar
  161. Scrutton, M. C., Griminger, P., Wallace, J. C., 1972. Pyruvate carboxylase: Bound metal content of the vertebrate liver enzyme as a function of diet, J. Biol. Chem. 247: 3305–3313.Google Scholar
  162. Shani, J., Ahronson, Z., Sulman, F. G., Mertz, W., Frenkel, A., Kraicer, P. F., 1972. Insulin- potentiating effect of salt bush Atriplex halimus) ashes, Isr. J. Med. Sci. 8: 757–758.Google Scholar
  163. Shrader, R. E., Everson, G. J., 1968. Pancreatic pathology in manganese-deficient guinea pigs, J. Nutr. 94: 269–281.PubMedGoogle Scholar
  164. Shukla, G. S., Chandra, S. V., 1981. Manganese toxicity: Lipid peroxidation in rat brain, Acta Pharmacol. Toxicol. 48: 95–100.Google Scholar
  165. Shukla, G. S., Chandra, S. V., 1982. Effects of manganese on carbohydrate metabolism mitochondrial enzymes in rats, Acta Pharmacol. Toxicol. 51: 209–216.Google Scholar
  166. Southern, L. L., Baker, D. H., 1983. Eimeria acervulina infection in chicks fed deficient or excess levels of manganese, J. Nutr. 113: 172–177.PubMedGoogle Scholar
  167. Stevens, J. B., Autor, A. P., 1977. Induction of superoxide dismutase by oxygen in neonatal rat lung, J. Biol. Chem. 252: 3509–3514.Google Scholar
  168. Suzuki, H., Wada, O., 1981. Role of liver lysosomes in uptake biliary excretion of manganese in mice, Environ. Res. 26: 521–528.Google Scholar
  169. Tagliamonte, A., Tagliamonte, P., Gessa, G. L., 1970. Reserpine-like action of chloropromazine on rabbit basal ganglia, J. Neurochem. 17: 733–738.PubMedCrossRefGoogle Scholar
  170. Tanaka, Y., 1977. Manganese: Its neurological teratological significance in man, Natl. Mtg. Chem. Soc., Chicago.Google Scholar
  171. Tandon, S. K., Khandelwal, S., 1982. Chelation in metal intoxication. XII. Antidotal efficacy of chelating agents on acute toxicity of manganese, Arch. Toxicol. 50: 19–25.Google Scholar
  172. Taylor, A., Sawan, S. James, T. L., 1982. Structural aspects of the inhibition complex formed by N-(leucyl)-o-aminobenzenesulfonate manganese with Zn2+-Mn2+ leucine aminopep- tidase (EC, J. Biol. Chem. 257: 11571–11576.Google Scholar
  173. Ter Harr, G. L., Griffing, M. E., Brandt, M., Oberding, D. G., Kapron, M., 1975. Methyl- cyclopent-adienyl manganese tricarbonyl as an antiknock: Composition fate of manganese exhaust products, J. Air Pollution Cont. Assoc. 25: 858–860.Google Scholar
  174. Thomson, A. B. R., Olatunbosum, D., Valberg, L. S., 1971. Interrelation of intestinal transport system of manganese iron, J. Lab. Clin. Med. 78: 643–655.Google Scholar
  175. Thomson, A. B. R., Valberg, L. S., 1972. Intestinal uptake of iron, cobalt manganese in the iron-deficient rat, Am. J. Physiol. 223: 1327–1329.Google Scholar
  176. Tsopanakis, A. D., Herries, D. G. 1978. Bovine galactosyl transferase. Substrate; manganese complexes the role of manganese ions in the mechanism, Eur. J. Biochem. 83: 179–188.Google Scholar
  177. Underwood, E. J., 1977. Trace Elements in Human Animal Nutrition, 4th ed., Academic Press, New York, pp. 170–195.Google Scholar
  178. Vaisius, A. C., Horgen, P. A., 1980. The effects of several divalent cations on the activation or inhibition of RNA polymerase II, Arch. Biochem. Biophys. 203: 553–564.Google Scholar
  179. Vallee, B. L., Coleman, J. E., 1964. Metal coordination enzyme action, in Comprehensive Biochemistry, Vol. 12, M. Florkin E. Stotz (eds.), Elsevier, New York, pp. 165–235.Google Scholar
  180. Van Woert, M. H., Nicholson, A., Cotzias, G. C., 1967. Mitochondrial functions of poly- melanosomes, Comp. Biochem. Physiol. 22: 477–485.Google Scholar
  181. Versieck, J., Barbier, F., Speecke, A., Hoste, J., 1974. Manganese, copper, zinc concentrations in serum packed blood cells during acute hepatitis, chronic hepatitis post hepatic cirrhosis, Clin. Chem. 20: 1141–1145.Google Scholar
  182. Vuori, E., 1979. Intake of copper, iron, manganese zinc by healthy, exclusively breast-fed infants during the first 3 months of life, Br. J. Nutr. 42: 407–411.Google Scholar
  183. Vuori, E., Makinen, S. M., Kara, R., Kuitunen, P., 1980. The effects of dietary intakes of copper, iron, manganese zinc on the trace element content of human milk, Am. J. Clin. Nutr. 33: 227–231.Google Scholar
  184. Walton, K. G., Baldessarini, R. J., 1976. Effects of Mn2+ other divalent cations on adenylate cyclase activity in rat brain, J. Neurochem. 27: 557–564.PubMedCrossRefGoogle Scholar
  185. Wenlock, R. W., Buss, D. H., Dixon, E. J., 1979. Trace nutrients. 2. Manganese in British food, Br. J. Nutr. 41: 253–261.Google Scholar
  186. Widdowson, E. M., 1969. Trace elements in human development, in Mineral Metabolism in Paediatrics, B. D. Burland (ed.), Blackwell Scientific Publications, Oxford, England, pp. 85–98.Google Scholar
  187. Wilberg, J. S., Neuman, W. F., 1957. The binding of bivalent metals by deoxyribonucleic ribonucleic acids, Arch. Biochem. Biophys. 72: 66–76.Google Scholar
  188. Wilgus, H. S., Norris, L. C., Heuser, G. F., 1936. The role of certain inorganic elements in the cause prevention of perosis, Science 84: 252–253.PubMedCrossRefGoogle Scholar
  189. Wilgus, H. S. Patton, A. R., 1939. Factors affecting manganese utilization in the chicken, J. Nutr. 18: 35–45.Google Scholar
  190. Williams, R. J. P., 1982. Free manganese(II) iron(II) cations can act as intracellular cell controls, FEBS Lett. 140: 3–10.PubMedCrossRefGoogle Scholar
  191. Worwood, M., 1974. Iron the tracer metals, in Iron Metabolism in Biochemistry Medicine, A. Jacobs M. Worwood (eds.), Academic Press, New York, p. 336.Google Scholar
  192. Woulfe-Flanagan, H., Huber, R. E., 1978. Cooperative binding of Mn2+ non-cooperative binding of Mg2+ to β-galactosidase (E. coli ), Biochem. Biophys. Res. Comm. 82: 1079–1083.Google Scholar
  193. Yipy G. B., Dain, J. A., 1970. The enzymic synthesis of ganglioside. II. UDP-galactose: N-acetylgalactosaminyl-(CN-acetylneuraminyl) galactosyl-glucosyl-ceramide galactosyltransfer- ase in rat brain. Biochem. Biophys. Acta 206: 252–260.Google Scholar
  194. Yoshioka, T., Utsunio, K., Sekiba, K., 1977. Superoxide dismutase activity lipid perox-idation of the rat liver during development, Biol. Neonate 32: 147–153.Google Scholar
  195. Zidenberg-Cherr, S., Keen, C. L., Lonnerdal, B., Hurley, L. S., 1983. Superoxide dismutase activity lipid peroxidation: Developmental correlations affected by manganese deficiency, J. Nutr. 113: 2498–2504.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Carl L. Keen
    • 1
  • Bo Lönnerdal
    • 1
  • Lucille S. Hurley
    • 1
  1. 1.Department of NutritionUniversity of CaliforniaDavisUSA

Personalised recommendations