• Nicholas M. Alexander
Part of the Biochemistry of the Elements book series (BOTE, volume 3)


Iodine was discovered in 1812 by Courtois in Paris while preparing saltpeter for the manufacture of gunpowder during the Napoleonic wars. Aqueous extracts of kelp mixed with hot sulfuric acid in a copper retort yielded a “vapor of a superb violet color that condensed in the form of a brilliant crystalline plate” (Parkes, 1967; Pitt-Rivers, 1978). In the following year Gay-Lussac established the elementary nature of iodine and named it from the Greek ιo0εδήs (violet).


Thyroid Hormone Thyroid Gland Iodine Deficiency Congenital Hypothyroidism Thyroid Peroxidase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahrens, L. H., 1965. Distribution of the Elements in Our Planet, McGraw-Hill, New York, p. 97.Google Scholar
  2. Alexander, N. M., 1959a. Iodide peroxidase in rat thyroid and salivary glands and its inhibition by antithyroid compounds, J. Biol. Chem. 234: 1530–1533.Google Scholar
  3. Alexander, N. M., 1959b. Antithyroid action of 3-amino-l,2,4-triazole, J. Biol. Chem. 234: 148–150.Google Scholar
  4. Alexander, N. M., 1961. The mechanism of iodination reactions in thyroid glands, Endocrinology 68: 671–679.PubMedCrossRefGoogle Scholar
  5. Alexander, N. M., 1962. A spectrophotometry assay for iodide oxidation by thyroid peroxidase, Anal. Biochem. 4: 341–345.Google Scholar
  6. Alexander, N. M., 1973. Oxidation and oxidative cleavage of tryptophanyl peptide bonds during iodination, Biochem. Biophys. Res. Comm. 54: 614–621.Google Scholar
  7. Alexander, N. M., 1974a. Oxidative cleavage of tryptophanyl peptide bonds during chemical- and peroxidase-catalyzed iodinations, J. Biol. Chem. 249: 1946–1952.Google Scholar
  8. Alexander, N. M., Jennings, J. F., 1974b. Analysis for total serum thyroxine by equilibrium competitive protein binding on small, resuable Sephadex columns. Clin. Chem. 20: 553–559.Google Scholar
  9. Alexander, N. M., Jennings, J. F., 1974c. Radioimmunoassay of serum triiodothyronine on small, reusable Sephadex columns. Clin. Chem. 20: 1353–1361.Google Scholar
  10. Alexander, N. M., 1976. Evidence for the oxidation of iodide to I+ by H2O2 and peroxidase, in Thyroid Research, J. Robbins and L. E. Braverman (eds.), American Elsevier, New York, pp. 134–138.Google Scholar
  11. Alexander, N. M., 1977. Purification of bovine thyroid peroxidase, Endocrinology 100: 1610–1620.PubMedCrossRefGoogle Scholar
  12. Alexander, N. M., Nishimoto, M., 1979. Rapid analysis for iodotyrosines and iodothyronines in thyroglobulin by 1979 reversed-phase liquid chromatography, Clin. Chem. 25: 1957–1960.Google Scholar
  13. Alexander, N. M., 1980. Thyroid peroxidase-catalyzed coupling of 3,5-diiodotyrosine (DIT) to thyroxine (T4): DIT-peptide and activator requirements, in Thyroid Research, Vol. VIII, J. R. Stockigt and S. Nagataki (eds.), Australian Academy of Science, Canberra, pp. 117–120.Google Scholar
  14. Alexander, N. M., Nishimoto, M., 1981. Protein-linked iodotyrosines in serum after topical application of povidone-iodine ( Betadine ), J. Clin. Endocr. Metab. 53: 105–108.Google Scholar
  15. Alexander, N. M., 1983. Reaction of povidone-iodine with amino acids and other important biological compounds, in Proc. Intl. Symposium on Povidone, G. A. Digenis and J. Ansell (eds.), Univ. of Kentucky, Lexington, Kentucky, pp. 274–288.Google Scholar
  16. Alexander, N. M., 1984. Analysis of iodothyronines and iodotyrosines in biological samples by higher performance liquid chromatography, in CRC Handbook for the Use of HPLC for the Separation of Amino Acids, Peptides, and Proteins, W. S. Hancock (ed.), CRC Press, Boca Raton, Fl., pp. 291–301.Google Scholar
  17. Barker, S. B., 1971. Chemistry, cellular and subcellular effects of thyroid hormones, in The Thyroid, S. C. Werner and S. H. Ingbar (eds.), Harper & Row, New York, pp. 79–92.Google Scholar
  18. Barnes, H. V., Rhodes, B. A., Wagner, H. N., Jr., 1978. Radiation physics, in The Thyroid, S. C. Werner and S. H. Ingbar (eds.), Harper & Row, New York, pp. 257–273.Google Scholar
  19. Belding, M. E., Klebanoff, S. J., Ray, C. G., 1970. Peroxidase-mediated virucidal systems, Science 167: 195–196.PubMedCrossRefGoogle Scholar
  20. Berliner, E., 1966. The current state of positive halogenating agents, J. Chem. Educ. 43: 124–133.Google Scholar
  21. Braverman, L. E., 1978, Disorders of iodine excess and deficiency, in The Thyroid, S. C. Werner and S. H. Ingbar (eds.), Harper & Row, New York, pp. 528–636.Google Scholar
  22. Cahnmann, H. J., 1972, Iodoamino acids, in Methods in Investigative and Diagnostic Endocrinology, Vol. 1, J. E. Rail and I. J. Kopin (eds.), ( S. A. Berson, general ed. ), American Elsevier, New York, pp. 27–51.Google Scholar
  23. Chopra, I. J., Crandall, B. F., 1975. Thyroid hormones and thyrotropin in amniotic fluid, New Engl. J. Med. 293: 740–743.Google Scholar
  24. Chopra, I. J., 1978. Nature, source and biologic significance of thyroid hormones in blood, in The Thyroid, S. C. Werner and S. H. Ingbar (eds.), Harper & Row, New York, pp. 100–114.Google Scholar
  25. Chopra, I. J., 1981. Triiodothyronine in Health and Disease, Monographs on Endocrinology, Vol. 18. Springer-Verlag, New York.Google Scholar
  26. Cody, V., 1980. Thyroid hormone interactions: Molecular conformation, protein binding, and hormone action, Endocr. Rev. 1: 140–166.Google Scholar
  27. Commerford, S. L., 1980. In vitro iodination of nucleic acids, in Methods in Enzymology, Vol. 70, H. Van Vunakis, J. J. Langone, (eds.), Academic Press, New York, pp. 247–252.Google Scholar
  28. Covelli, I., vanZyl, A., and Edelhoch, H., 1971. Spectrophotometric determination of monoiodo- tyrosine, diiodotyrosine and thyroxine in iodoproteins, Anal. Biochem. 42: 82–90.Google Scholar
  29. Dratman, M. B., 1978. The mechanism of thyroxine action, in Hormanal Proteins and Peptides, Vol. 6, C. H. Li (ed.), pp. 205–271.Google Scholar
  30. Encyclopedia Brittanica, Macropaedia, Vol. 6, 1978. Helen Hemingway Benton Publisher, Chicago, p. 702.Google Scholar
  31. Feigl, F., and Anger, V., 1972. Spot Tests in Inorganic Analysis, American Elseveir, New York, pp. 253–254.Google Scholar
  32. Fraker, P. J., Speck, J. C., 1978. Protein and cell membrane iodinations with a sparingly soluble chloramide, 1,3,4,6-tetrachloro-3,6-diphenylglycoluril, Biochem. Biophys. Res. Comm. 80: 849–857.Google Scholar
  33. Frieden, E., 1981a. Iodine and the thyroid hormones, Trends Biochem. Sci. 6: 50–53.Google Scholar
  34. Frieden, E., 1981b. The dual role of thyroid hormones in vertebrate development and calorigenesis, in Metamorphosis, L. I. Gilbert and E. Frieden (eds.), Plenum, New York, pp. 545–563.CrossRefGoogle Scholar
  35. Gavaret, J. M., Nunez, J., Cahnmann, H. J., 1980. Formation of dehydroalanine residues during thyroid hormone synthesis in thyroglobulin, J. Biol. Chem. 255: 5281–5285.Google Scholar
  36. Gorbman, A., 1978. Evolution of thyroid function, in Hormonal Proteins and Peptides, Vol. 6, C. H. Li (ed.), pp. 383–389.Google Scholar
  37. Green, W. L., 1978. Mechanism of action of antithyroid compounds, in The Thyroid, S. C. Werner and S. H. Ingbar (eds.), Harper & Row, New York, pp. 77–87.Google Scholar
  38. Greenwood, F. C., Hunter, W. M., Glover, J. S., 1963. Biochem. J. 89: 114–123.PubMedGoogle Scholar
  39. Guernsey, D. L., Borek, C., Edelman, I. S., 1981. Crucial role of thyroid hormone in x-ray induced neoplastic transformation in cell culture, Proc. Nat. Acad. Sci. 78: 5708–5711.Google Scholar
  40. Harington, C. R., Barger, G., 1927. XXIII Chemistry of thyroxine. III. Constitution and synthesis of thyroxine, Biochem. J. 21: 169–183.Google Scholar
  41. Hay, I. D., Annesley, T. M., Jiang, N. S., Gorman, C. A., 1981. Simultaneous determination of D- and L-thyroxine in human serum by liquid chromatography with electrochemical detection, J. Chromatog. 226: 383–390.CrossRefGoogle Scholar
  42. Hearn, M. T. W., Hancock, W. S., 1979. High pressure liquid chromatography of thyromimetic iodoamino acids, J. Liq. Chromatogr. 2: 217–237.Google Scholar
  43. Hearn, M. T. W., Hancock, W. S., Bishop, C. A., 1978. High-pressure liquid chromatography of amino acids, peptides and proteins. V. Separation of thyroidal iodo-amino acids by hydrophilic ion-paired reversed-phase high performance liquid chromatography, J. Chromatog. 157: 337–344.Google Scholar
  44. Hollingsworth, D. R., Alexander, N. M., 1983. Failure of amniotic fluid hormones to reliably predict neonatal outcome in pregnancies complicated by anencephaly or hyperthyroidism, J. Clin. End. Metab. 57: 349–355.Google Scholar
  45. Jorgensen, E. C., 1978a. Thyroid hormones and analogs. I. Synthesis, Physical properties and theoretical calculations, in Hormonal Proteins and Peptides, Vol. 6, C. H. Li (ed.), pp. 57–105.Google Scholar
  46. Jorgensen, E. C., 1978b. Thyroid hormones and analogs, II. Structure-activity relationships, in Hormonal Proteins and Peptides, Vol. 6, C. H. Li (ed.), pp. 107–204.Google Scholar
  47. Junek, H., Kirk, K. L., Cohen, L. A., 1969. The oxidative cleavage of tyrosyl-peptide bonds during iodination, Biochemistry 8: 1844–1848.PubMedCrossRefGoogle Scholar
  48. Kendall, E. C., 1919. Isolation of the iodine compound which occurs in the thyroid, J. Biol. Chem. 39: 125–147.Google Scholar
  49. Klebanoff, S. J., 1967. Iodination of bacteria: A bactericidal mechanism, J. Exp. Med. 126: 1063–1076.Google Scholar
  50. Kleinberg, J., Argersinger, W. J., Griswold, E., 1960. Inorganic Chemistry, Heath, Boston, pp. 458–459.Google Scholar
  51. Lankmayr, E. P., Maichin, B., Knapp, G., 1981. Catalytic detection principle for high-per- formance liquid chromatography: Determination of enantiomeric iodinated thyronines in blood serum, J. Chromatogr. 224: 239, 248.Google Scholar
  52. Krinsky, M., Alexander, N. M., 1971. Thyroid Peroxidase: Nature of the heme binding to apoperoxidase, J. Biol. Chem. 246: 4755–4758.Google Scholar
  53. Larsen, P. R., 1978. Thyroid hormone concentrations, in The Thyroid, S. C. Werner and S. H. Ingbar (eds.), Harper & Row, New York, pp. 321–337.Google Scholar
  54. Layman, P., 1982. Chemical and Engineering News, June 14, pp. 12–13.Google Scholar
  55. Mayberry, W. E., 1972. Iodine chemistry, in Methods in Investigative and Diagnostic Endocrinology, Vol. 1, J. E. Rail and I. J. Kopin (eds.), ( S. A. Berson, general ed. ), American Elsevier, New York, pp. 3–26.Google Scholar
  56. McConahey, P. J., Dixon, F. J., 1980. Radioiodination of proteins by the use of the chloramine-T method, in Methods in Enzymology, Vol. 70, H. Van Vunakis and J. J. Langone (eds.), Academic Press, New York, pp. 210–213.Google Scholar
  57. Morrison, M., 1980. Lactoperoxidase-catalyzed iodination as a tool for investigation of proteins, in Methods in Enzymology, Vol. 70, H. Van Vunakis and J. J. Langone (eds.), Academic Press, New York, pp. 214–220.Google Scholar
  58. Nachtmann, F., Knapp, G., Spitzy, H., 1978. Catalytic detection principle for high-performance liquid chromatography. J. Chromatog. 149: 693–702.CrossRefGoogle Scholar
  59. Nicoloff, J. T., 1978. Thyroid hormone transport and metabolism: Pathophysiologic implications, in The Thyroid, S. C. Werner and S. H. Ingbar (eds.), Harper & Row, New York, pp. 88–99.Google Scholar
  60. Nunez, J., 1980. Iodination and thyroid hormone synthesis, in The Thyroid Gland, M. DeVisscher (ed.), Raven Press, New York, pp. 39–49.Google Scholar
  61. Oddie, T. H., Fisher, D. A., McConahey, W. M., Thompson, C. S., 1970. Iodine intake in the United States: A reassessment, J. Clin. Endocr. Met. 30: 659–665.Google Scholar
  62. Oppenheimer, J. H., 1979. Thyroid hormone action at the cellular level, Science 203: 971–979.PubMedCrossRefGoogle Scholar
  63. Parkes, G. D., 1967. Mellor’s Modern Inorganic Chemistry, Wiley, New York, pp. 522–580.Google Scholar
  64. Pitt-Rivers, R., Tata, J., 1959. The Thyroid Hormones, Pergamon Press, New York, pp. xi–xiii, 1–17.Google Scholar
  65. Pitt-Rivers, R., 1978. The thyroid hormones: Historical aspects, in Hormonal Proteins and Peptides, Vol. 6, C. H. Li (ed.), pp. 391–422.Google Scholar
  66. Prasad, A. S., 1978. Trace Elements and Iron in Human Metabolism, Plenum, New York, pp. 63–75.Google Scholar
  67. Pretell, E. A., Moncloa, F., Salinas, R., Kawano, A., Guerra-Garcia, R., Gutierrez, L., Beteta, J., Pretell, J. Wan, M., 1969. Prophylaxis and treatment of endemic goiter in Peru with iodized oil, J. Clin. End. Metab. 29: 1586–95.Google Scholar
  68. Refetoff, S., 1979. Thyroid function tests, in Endocrinology, L. J. De Groot, G. F. Cahill, Jr., L. Martini, D. H. Nelson, W. D. Odell, J. T. Potts, Jr., E. Steinberger, A. I. Winegrad (eds.), Grune & Stratton, New York, pp. 387–428.Google Scholar
  69. Roche, J., Michel, R., 1951. Natural and artificial iodoproteins, in Advances in Protein Chemistry, M. L. Anson, J. T. Edsall, K. Bailey (eds.), Academic Press, New York, pp. 253–297.Google Scholar
  70. Rolland, M., Aquaron, R., and Lissitzky, S., 1970. Thyroglobulin iodoamino acids estimation after digestion with pronase and leucylaminopeptidase, Anal. Biochem. 33: 307–317.Google Scholar
  71. Samuels, H. H., Tsai, J. S., 1973. Thyroid hormone action in cell culture: Demonstration of nuclear receptors in intact cells and isolated nuclei, Proc. Nat. Acad. Sci. USA 70: 3488–3492.Google Scholar
  72. Sandell, E. B., Kolthoff, T. M., 1937. Microdetermination of iodine by a catalytic method, Mikrochim. Acta 1: 9–25.Google Scholar
  73. Sidlowski, J. J., Frieden, E., 1982. Triiodothyronine induces an increase in cyclic GMP in bullfrog tadpole tissues, Biosci. Rep. 2: 569–573.Google Scholar
  74. Sneed, M. C., Maynard, J. L., Brasted, R. C., 1961. Comprehensive Inorganic Chemistry, Vol. III, The Halogens, Van Nostrand, Princeton, N.J., pp. 1–3, 78–99.Google Scholar
  75. Sorimachi, K., Ui, N., 1974. An improved chromatographic method for the analysis of iodoamino acids in tyroglobulin, J. Biochem. ( Tokyo ) 76: 39–45.Google Scholar
  76. Spangenberg, D. B., 1974. Thyroxine in early strobilation in Aurelia aurita, Am. Zool. 14: 825–831.Google Scholar
  77. Stanbury, J. B., Ermans, A. M., Hetzel, B. S., Pretell, E. A., Querido, A., 1974. Endemic goitre and cretinism: Public health significance and prevention, WHO Chron. 28: 220–228.Google Scholar
  78. Sterling, K., 1979. Thyroid hormone action at the cell level, N. Engl. J. Med. 300:117–123; 173–177.Google Scholar
  79. Taurog, A., Howells, E. M., Nachimson, H. I., 1966. Conversion of iodate to iodide in vivo and in vitro, J. Biol. Chem. 241: 4686–4693.Google Scholar
  80. Taurog, A., 1978. Thyroid hormone synthesis and release, in The Thyroid, S. C. Werner and S. H. Ingbar (eds.), Harper & Row, New York, pp. 31–61.Google Scholar
  81. Tong, W., 1971. Thyroid hormone synthesis and release, in The Thyroid, S. C. Werner and S. H. Ingbar (eds.), Harper & Row, New York, pp. 24–40.Google Scholar
  82. Underwood, E. J., 1977. Trace elements in human and animal nutrition, Academic Press, 4th ed., pp. 271–301.Google Scholar
  83. Von Hippel, F., Wolfe, S., La Cheen, C., 1982. Potassium iodide policy (Letters to the Editor), Science 218:295; 1983. 221: 906.Google Scholar
  84. Yalow, R. S., 1982. Potassium iodide distribution (Letters to the Editor), Science 217: 295–296; 218: 742.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Nicholas M. Alexander
    • 1
  1. 1.Division of Clinical Pathology, Department of PathologyUniversity of California School of MedicineSan DiegoUSA

Personalised recommendations