Skip to main content

The Discovery of the Essential Trace Elements: An Outline of the History of Biological Trace Element Research

  • Chapter
Book cover Biochemistry of the Essential Ultratrace Elements

Part of the book series: Biochemistry of the Elements ((BOTE,volume 3))

Abstract

After decades of intense research activity on organic nutrients, enzymes, vitamins, and hormones, investigators from different disciplines in recent years have directed their attention increasingly to the long neglected inorganic nutrients, and in particular the trace elements. Recent extraordinary developments have created a need for a concise account of the major advancements in this field for specialists as well as for members of neighboring disciplines. The present monograph is intended to fill this need. Responding to the invitation of the editor to contribute an introductory chapter to this volume, I have prepared a brief account of the history of biological trace element research, concentrating on individual discoveries of the essentiality of elements for animals and man. It is dedicated to the memory of three men who deserve prominent positions in the Hall of Fame of biological trace element research: to Jules Raulin (1836–1896), for his contribution to the development of the concept of “essentiality”; to Klaus Schwarz (1914–1978), uniquely successful discoverer of new essential trace elements; and to Eric J. Underwood (1905–1980), researcher, author, and until his death one of the unifying philosophical leaders in the field (Carles, 1972; Schrauzer, 1979, 1980).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anke, M., Grün, M., Dittrich, G., Groppel, B., Hennig, A., 1974. Low nickel rations for growth reproduction in pigs. In: Trace Metabolism in Animals, W. G. Hoeckstra, et al., (eds.), University Park Press, Baltimore, pp. 716–718.

    Google Scholar 

  • Anke, M., Grün, M., Groppel, B., Kronemann, H., 1981. The biological importance of lithium, in Mengen- und Spurenelemente, Arbeitstagung Leipzig 1981, pp. 217–239.

    Google Scholar 

  • Anke, M., Hennig, A., Groppel, B., Partschefeld, M., Grün, M., 1978. The biochemical role of cadmium, in Proceedings of the Third International Symposium on Trace Element Metabolism in Man Animals, M. Kirchgessner (ed.), Freising-Weihenstephan, Germany, pp. 540–548.

    Google Scholar 

  • Anke, M., Hennig, A., Grün, M., Partschefeld, M., Groppel, B., Lüdke, 1976. Arsen- ein neues essentielles Spurenelement, Arch. Tierernähr. 26: 742–743.

    Google Scholar 

  • Anke, M., Hennig, A., Grün, M., Patschefeld, M., Groppel, B., Lüdke, H., 1977, Nickelein essentielles Spurenelement, Arch. Tierernähr. 27: 25–38.

    Google Scholar 

  • Arnon, D. I., 1958. The role of micronutrients in plant nutrition with special reference to photosynthesis nitrogen assimilation, in Trace Elements. Proceedings of the Conference Held at Ohio Agricultural Experimental Station, Wooster, Ohio, Oct. 14–16, 1957, C. A. Lamb, O. G. Bentley, J. M. Beattie (eds.), Academic, New York, pp. 1–32.

    Google Scholar 

  • Bodansky, M., 1921. The zinc copper content of the human brain, J. Biol. Chem. 48: 361–364.

    Google Scholar 

  • Bray, R. C., Avis, P. G., Bergel, F., 1955. The chemistry of xanthine oxidase from cow milk, Congr. Internatl. Biochem. Resumes communs. 3emeCongress, Brussels, 30.

    Google Scholar 

  • Brouwer, F., Frens, A. M., Reitsma, P., Kalisvaast, C., 1938. VerslagLandbouwk. Onderzoek. 44C:267, quoted by E. J. Underwood, in Trace Elements in Human Animal Nutrition, 3rd ed., Academic, New York, 1971, pp. 130–140.

    Google Scholar 

  • Carles, J. B., 1972. Raulin, Jules, in Dictionary of Scientific Biography, Vol. XI, C. C. Gillespie (ed.), Scribner’s, New York, pp. 310–311.

    Google Scholar 

  • Carlisle, M., 1972, Silicon, an essential element for the chick, Fed. Proc. 31: 700.

    Google Scholar 

  • Chen, X., Yang, G., Chen, J., Chen, X., Wen, Zh., Ge, K., 1980. Studies on the relations of selenium Keshan disease, Biol. Trace Element Res. 2: 91–107.

    Google Scholar 

  • Curran, G. L., 1964. Effect of certain transition group elements on hepatic synthesis of cholesterol in the rat, J. Biol. Chem. 210: 765–768.

    Google Scholar 

  • De Renzo, E. C. E., Kaleita, E., Heytler, P. G., Oleson, J. J., Hutchings, B. L., Williams, J. H., 1953. Identification of the xanthine oxidase factor as molybdenum, Arch. Biochem. Biophys. 45: 247.

    Google Scholar 

  • Erway, K., Hurley, L. S., Fraser, A., 1966. Neurologic defect. Manganese in phenocopy prevention of genetic abnormality in inner ear, Science 152: 1766–1768.

    Google Scholar 

  • Ferguson, W. S., Lewis, A. H., Watson, S. J., 1938. Action of molybdenum in nutrition of milking cattle, Nature (London) 141: 553.

    Article  CAS  Google Scholar 

  • Hart, E. B., Steenbock, H., Waddell, J., Elvehjem, C. A., 1928. Iron in Nutrition. VII. Copper as a supplement to iron for hemoglobin building in the rat, J. Biol. Chem. 77: 797–812.

    Google Scholar 

  • Henkin, R. I., 1982. A New Approach to Zinc Deficiency, 1982, Abstracts, 3rd Int. Conf. Inorganic Nutritional Aspects of Cancer Other Diseases, La Jolla, 1982, pp. 2–3.

    Google Scholar 

  • Higgins, E. S., Richert, D. A., Westerfield, W. W., 1956. Molybdenum deficiency andtungstate inhibition studies, J. Nutr. 59: 539–559.

    PubMed  CAS  Google Scholar 

  • Hopkins, L. L., Jr., Mohr, H. W., 1971. Effect of vanadium deficiency on plasma cholesterol of chicks, Fed. Proc. 30: 462.

    Google Scholar 

  • Josephs, H. W., 1932. Studies on iron metabolism the influence of copper, J. Biol. Chem. 96: 559–571.

    Google Scholar 

  • Josephs, H. W., 1931. Treatment of anemia of infancy with iron copper, Bull. Johns Hopkins Hosp. 49: 246–258.

    Google Scholar 

  • Kemmerer, A. R., Todd, W. R., 1931. The effect of diet on manganese content of milk, J. Biol. Chem. 94: 317–321.

    Google Scholar 

  • Kirchgessner, M., Reichlmayr-Lais, A., 1981. Changes of iron concentration iron binding capacity in serum resulting from alimentary lead deficiency, Biol. Trace Element Res. 3: 279.

    Google Scholar 

  • Klevay, L. M., 1975. Coronary heart disease: The zinc/copper hypothesis, Am. J. Clin. Nutr. 28: 764–774.

    Google Scholar 

  • Klevay, L. M., 1982. Copper Ischemic Heart Disease. Abstracts, 3rd Int. Conf. Inorganic Nutritional Aspects of Cancer Other Diseases, La Jolla, 1982, p. 1.

    Google Scholar 

  • Leach, R. M., 1967. Role of manganese in synthesis of mucopolysaccharides, Fed. Proc. 26: 118–120.

    Google Scholar 

  • Leach, R. M., 1971. Role of manganese in mucopolysaccharide metabolism, Fed. Proc. 30: 991–994.

    Google Scholar 

  • Lenhert, P. G., Crowfoot-Hodgkin, D., 1961. Structure of the 5, 6-dimethylbenzimidazolyleobamide coenzyme, Nature (London) 192: 937–938.

    CAS  Google Scholar 

  • Lewis, C. E., 1959. The biological actions of vanadium. I. Effects upon serum cholesterol levels in man, AMA Arch. Ind. Health 19: 419–425.

    Google Scholar 

  • Lines, E. W., 1935. J. Council Sci. Ind. Res. 8: 117.

    Google Scholar 

  • Lombeck, I., Kasperek, K., Feinendegen, L. E., Bremer, H. J., 1980. Rubidium — a possible essential trace element, Biol. Trace Element Res. 2: 193–198.

    Google Scholar 

  • Marston, H. R., 1935. J. Council Sci. Ind. Res. 8:111, quoted by Underwood, E. J., in Trace Elements in Human Animal Nutrition, 3rd ed., Academic, New York, 1972, pp. 141–168.

    Google Scholar 

  • McHargue, J. S., 1925. The association of copper with substances containing the fat soluble A vitamin, Am. J. Physiol. 72: 583–594.

    Google Scholar 

  • McHargue, J. S., 1926. Further evidence that small quantities of copper, manganese zinc are factors in the metabolism of animals, Am. J. Physiol. 77: 245–255.

    Google Scholar 

  • McLean, J. W., Thompson, G. G., Claxon, J. H., 1959. Growth responses to selenium in lambs, Nature (London) 184: 251.

    Article  CAS  Google Scholar 

  • Messer, H. H., Armstrong, W. D., Singer, L., 1972a. Fertility impairment in mice following low fluoride intake, Science 177: 893–894.

    Article  PubMed  CAS  Google Scholar 

  • Messer, H. H., Wong, K., Wegner, M., 1972b. Effect of reduced fluoride intake of mice on hematocrit values, Nature ( London ), New Biol. 240: 218–220.

    Google Scholar 

  • Muth, O. H., Oldfield, J. E., Rennert, L. F., Schubert, J. R., 1958, Effects of selenium vitamin E on white muscle disease, Science 128: 1090.

    Article  PubMed  CAS  Google Scholar 

  • Nielsen, F. H., Givad, S. H., Myron, D. R., 1975. Evidence for a possible requirement for arsenic by the rat, Fed. Proc. 34: 923–925.

    Google Scholar 

  • Nielsen, F. H., Ollerich, D. A., 1974. Nickel: A new trace element, Fed. Proc. 33: 1767–1769.

    Google Scholar 

  • O’Dell, B. L., Hardwick, B. C., Reynolds, G., Savage, J. E., 1961. Connective tissue defect in the chick resulting from copper deficiency, Proc. Soc. Exp. Biol. Med. 108: 402–404.

    Google Scholar 

  • Patterson, E. L., Milstrey, R., Stokstad, E. L. R., 1957. Effect of selenium in preventing exudative diathesis in chicks, Proc. Soc. Exp. Biol. Med. 95: 617–620.

    Google Scholar 

  • Pories, W. J., Henzel, J. H., Rob, C. G., Strain, W. H., 1967. Acceleration of wound healing, Lancet 1: 121–124.

    Article  PubMed  CAS  Google Scholar 

  • Prasad, A. S., Halsted, J. A., Nadimi, M., 1961. Syndrome of iron deficiency anemia, hepatosplenomegaly, dwarfism, hypogonadism, geophagia, Am. J. Med. 31: 532–546.

    Google Scholar 

  • Prasad, A. S., Miale, A., Farid, Z., Schulert, A., Sandstead, H. H., 1963. Zinc metabolism in normals patients with the syndrome of iron deficiency, anemia, hypogonadism dwarfism, J. Lab. Clin. Med. 61: 537–549.

    Google Scholar 

  • Raulin, J., 1870. Études chimiques sur la végétation, Ann. Sci. Nat. Bot., 5th ser. 51: 93–299.

    Google Scholar 

  • Rotruck, J. T., Hoekstra, W. G., Pope, A. L., Ganther, H., Swanson, A. B., Hafeman, D. G., 1972. Relation of selenium to GSH peroxidase, Fed. Proc. 31: 691 (Abstract 2684).

    Google Scholar 

  • Schnegg, A., Kirchgessner, M., 1975. Zur Essentialität von Nickel fur das tierische Wachstum, Ztschr. Tierphysiol., Tierernaehrung u. Futtermittelkunde 36: 63–74.

    Google Scholar 

  • Schrauzer, G. N., 1979a. Klaus Schwarz, 1914–1978, Commemoration of a leader in trace element research, in Trace Metals in Health Disease, N. Kharash (ed.), Raven Press, New York, pp. 251–261.

    Google Scholar 

  • Schrauzer, G.N., 1979b. Trace elements in carcinogenesis, Advances in Nutritional Research, Vol. 2, H. Draper (ed.), Plenum, New York, pp. 219–244 references therein.

    Google Scholar 

  • Schrauzer, G. N., 1980. In Memoriam Eric John Underwood, Biol. Trace Elements Res. 2: 231–234.

    Google Scholar 

  • Schwarz, K., 1944, Über einen ernaehrungsbedingten, tödlichen Leberschaden und seine Verhütung durch Leberschutzstoffe. Z. Physiolog. Chem. 281: 101–108.

    Google Scholar 

  • Schwarz, K., 1951. Production of dietary necrotic liver degeneration using American Torula yeast, Proc. Soc. Exp. Biol. Med. 80: 319–323.

    Google Scholar 

  • Schwarz, K., 1975, Neuere Erkenntnisse über den essentiellen Charakter einiger Spurenelemente, in Spurenelemente in der Entwicklung von Mensch und Tier, K. Betke, F. Bindlingmaier (eds.), Urban und Schwarzenberg, München, pp. 1–30.

    Google Scholar 

  • Schwarz, K., 1977, Essentiality versus toxicity of metals, in Clinical Chemistry Chemical Toxicology of Metals, S. S. Brown (ed.), Elsevier/North Holland Biomedical Press, New York, Amsterdam, pp. 3–22.

    Google Scholar 

  • Schwarz, K., Foltz, C. M., 1957. Selenium as an integral part of factor 3 against necrotic liver degeneration, J. Am. Chem. Soc. 79: 3292.

    Google Scholar 

  • Schwarz, K., Bieri, J. G., Briggs, G. M., Scott, M. L., 1957. Prevention of exudative diathesis in chicks by factor 3 selenium, Proc. Soc. Exp. Biol. Med. 95: 621–625.

    Google Scholar 

  • Schwarz, K., Mertz, W., 1959. Chromium(III) the glucose tolerance factor, Arch. Biochem. Biophys. 85: 292–295.

    Google Scholar 

  • Schwarz, K., Milne, D. B., 1971, Growth effects of vanadium in the rat, Science 174: 425.

    Article  Google Scholar 

  • Schwarz, K., Milne, D. B., 1972a, Fluorine requirement for growth in the rat, Bioinorg. Chem. 1: 331–358.

    Google Scholar 

  • Schwarz, K., Milne, D. B., 1972b. Growth promoting effects of silicon in rats. Nature (London) 239: 333–334.

    Article  CAS  Google Scholar 

  • Schwarz, K., Milne, D. B., Vinyard, E., 1970. Growth effects of tin compounds in rats maintained in a trace element-controlled environment, Biochem. Biophys. Res. Commun. 40: 22–29.

    Google Scholar 

  • Smith, J. C., Schwarz, K., 1967. A controlled environment system for new trace element deficiencies, J. Nutr. 93: 182–188.

    PubMed  CAS  Google Scholar 

  • Smith, S. E., Koch, B. A., Turk, K. L., 1951. The response of cobalt-deficient lambs to liver extract vitamin B12, J. Nutr. 44: 455–459.

    PubMed  CAS  Google Scholar 

  • Todd, W. R., Elvehjem, C. A., Hart, E. B., 1934. Zinc in the nutrition of the rat, Am. J. Physiol. 107: 146–156.

    Google Scholar 

  • Tucker, H. F., Salmon, W. D., 1955. Parakeratosis or zinc deficiency disease in the pig, Proc. Soc. Exp. Biol. Med. 88: 613.

    Google Scholar 

  • Vallee, B. L., Wacker, W. E. C., Bartholomay, A. F., Robin, E. D., 1956. Zinc metabolism in hepatic dysfunction. I. Serum zinc concentrations in Laennec’s cirrhosis their validation by sequential analysis, New Engl. J. Med. 255: 403–408.

    Google Scholar 

  • Vallee, B. L., Wacker, W. E. C., Bartholomay, A. F., Hoch, F. L., 1957. Zinc metabolism in hepatic dysfunction. II. Correlation of metabolic patterns with biochemical findings, New Engl. J. Med. 257: 1055–1065.

    Google Scholar 

  • Underwood, E. J., Filmer, J. F., 1935. Aust. Vet. J. 11:84–88; see Underwood, E. J., in Trace Elements in Human Animal Nutrition, 3rd ed., Academic, New York, 1971, pp. 123–156.

    Google Scholar 

  • Vohora, S. B., 1982. Earth Elements Man, Department of Philosophy of Medicine, Inst, of Hist, of Medicine Medical Research, Hamdard Nagar, New Delhi-110062, India.

    Google Scholar 

  • Zhu, Mei-Nuan, 1980. An exploration of the chemical mechanism for Kashin-Beck’s disease environmental factors — multivariate functional relationship of molybdenum with biogeochemical environment, Huan Ching K’o Hsueh l(3):31–37 Chem. Abstr. 21: 53876 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Schrauzer, G.N. (1984). The Discovery of the Essential Trace Elements: An Outline of the History of Biological Trace Element Research. In: Frieden, E. (eds) Biochemistry of the Essential Ultratrace Elements. Biochemistry of the Elements, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4775-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4775-0_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4777-4

  • Online ISBN: 978-1-4684-4775-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics