The Discovery of the Essential Trace Elements: An Outline of the History of Biological Trace Element Research

  • Gerhard N. Schrauzer
Part of the Biochemistry of the Elements book series (BOTE, volume 3)

Abstract

After decades of intense research activity on organic nutrients, enzymes, vitamins, and hormones, investigators from different disciplines in recent years have directed their attention increasingly to the long neglected inorganic nutrients, and in particular the trace elements. Recent extraordinary developments have created a need for a concise account of the major advancements in this field for specialists as well as for members of neighboring disciplines. The present monograph is intended to fill this need. Responding to the invitation of the editor to contribute an introductory chapter to this volume, I have prepared a brief account of the history of biological trace element research, concentrating on individual discoveries of the essentiality of elements for animals and man. It is dedicated to the memory of three men who deserve prominent positions in the Hall of Fame of biological trace element research: to Jules Raulin (1836–1896), for his contribution to the development of the concept of “essentiality”; to Klaus Schwarz (1914–1978), uniquely successful discoverer of new essential trace elements; and to Eric J. Underwood (1905–1980), researcher, author, and until his death one of the unifying philosophical leaders in the field (Carles, 1972; Schrauzer, 1979, 1980).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anke, M., Grün, M., Dittrich, G., Groppel, B., Hennig, A., 1974. Low nickel rations for growth reproduction in pigs. In: Trace Metabolism in Animals, W. G. Hoeckstra, et al., (eds.), University Park Press, Baltimore, pp. 716–718.Google Scholar
  2. Anke, M., Grün, M., Groppel, B., Kronemann, H., 1981. The biological importance of lithium, in Mengen- und Spurenelemente, Arbeitstagung Leipzig 1981, pp. 217–239.Google Scholar
  3. Anke, M., Hennig, A., Groppel, B., Partschefeld, M., Grün, M., 1978. The biochemical role of cadmium, in Proceedings of the Third International Symposium on Trace Element Metabolism in Man Animals, M. Kirchgessner (ed.), Freising-Weihenstephan, Germany, pp. 540–548.Google Scholar
  4. Anke, M., Hennig, A., Grün, M., Partschefeld, M., Groppel, B., Lüdke, 1976. Arsen- ein neues essentielles Spurenelement, Arch. Tierernähr. 26: 742–743.Google Scholar
  5. Anke, M., Hennig, A., Grün, M., Patschefeld, M., Groppel, B., Lüdke, H., 1977, Nickelein essentielles Spurenelement, Arch. Tierernähr. 27: 25–38.Google Scholar
  6. Arnon, D. I., 1958. The role of micronutrients in plant nutrition with special reference to photosynthesis nitrogen assimilation, in Trace Elements. Proceedings of the Conference Held at Ohio Agricultural Experimental Station, Wooster, Ohio, Oct. 14–16, 1957, C. A. Lamb, O. G. Bentley, J. M. Beattie (eds.), Academic, New York, pp. 1–32.Google Scholar
  7. Bodansky, M., 1921. The zinc copper content of the human brain, J. Biol. Chem. 48: 361–364.Google Scholar
  8. Bray, R. C., Avis, P. G., Bergel, F., 1955. The chemistry of xanthine oxidase from cow milk, Congr. Internatl. Biochem. Resumes communs. 3emeCongress, Brussels, 30.Google Scholar
  9. Brouwer, F., Frens, A. M., Reitsma, P., Kalisvaast, C., 1938. VerslagLandbouwk. Onderzoek. 44C:267, quoted by E. J. Underwood, in Trace Elements in Human Animal Nutrition, 3rd ed., Academic, New York, 1971, pp. 130–140.Google Scholar
  10. Carles, J. B., 1972. Raulin, Jules, in Dictionary of Scientific Biography, Vol. XI, C. C. Gillespie (ed.), Scribner’s, New York, pp. 310–311.Google Scholar
  11. Carlisle, M., 1972, Silicon, an essential element for the chick, Fed. Proc. 31: 700.Google Scholar
  12. Chen, X., Yang, G., Chen, J., Chen, X., Wen, Zh., Ge, K., 1980. Studies on the relations of selenium Keshan disease, Biol. Trace Element Res. 2: 91–107.Google Scholar
  13. Curran, G. L., 1964. Effect of certain transition group elements on hepatic synthesis of cholesterol in the rat, J. Biol. Chem. 210: 765–768.Google Scholar
  14. De Renzo, E. C. E., Kaleita, E., Heytler, P. G., Oleson, J. J., Hutchings, B. L., Williams, J. H., 1953. Identification of the xanthine oxidase factor as molybdenum, Arch. Biochem. Biophys. 45: 247.Google Scholar
  15. Erway, K., Hurley, L. S., Fraser, A., 1966. Neurologic defect. Manganese in phenocopy prevention of genetic abnormality in inner ear, Science 152: 1766–1768.Google Scholar
  16. Ferguson, W. S., Lewis, A. H., Watson, S. J., 1938. Action of molybdenum in nutrition of milking cattle, Nature (London) 141: 553.CrossRefGoogle Scholar
  17. Hart, E. B., Steenbock, H., Waddell, J., Elvehjem, C. A., 1928. Iron in Nutrition. VII. Copper as a supplement to iron for hemoglobin building in the rat, J. Biol. Chem. 77: 797–812.Google Scholar
  18. Henkin, R. I., 1982. A New Approach to Zinc Deficiency, 1982, Abstracts, 3rd Int. Conf. Inorganic Nutritional Aspects of Cancer Other Diseases, La Jolla, 1982, pp. 2–3.Google Scholar
  19. Higgins, E. S., Richert, D. A., Westerfield, W. W., 1956. Molybdenum deficiency andtungstate inhibition studies, J. Nutr. 59: 539–559.PubMedGoogle Scholar
  20. Hopkins, L. L., Jr., Mohr, H. W., 1971. Effect of vanadium deficiency on plasma cholesterol of chicks, Fed. Proc. 30: 462.Google Scholar
  21. Josephs, H. W., 1932. Studies on iron metabolism the influence of copper, J. Biol. Chem. 96: 559–571.Google Scholar
  22. Josephs, H. W., 1931. Treatment of anemia of infancy with iron copper, Bull. Johns Hopkins Hosp. 49: 246–258.Google Scholar
  23. Kemmerer, A. R., Todd, W. R., 1931. The effect of diet on manganese content of milk, J. Biol. Chem. 94: 317–321.Google Scholar
  24. Kirchgessner, M., Reichlmayr-Lais, A., 1981. Changes of iron concentration iron binding capacity in serum resulting from alimentary lead deficiency, Biol. Trace Element Res. 3: 279.Google Scholar
  25. Klevay, L. M., 1975. Coronary heart disease: The zinc/copper hypothesis, Am. J. Clin. Nutr. 28: 764–774.Google Scholar
  26. Klevay, L. M., 1982. Copper Ischemic Heart Disease. Abstracts, 3rd Int. Conf. Inorganic Nutritional Aspects of Cancer Other Diseases, La Jolla, 1982, p. 1.Google Scholar
  27. Leach, R. M., 1967. Role of manganese in synthesis of mucopolysaccharides, Fed. Proc. 26: 118–120.Google Scholar
  28. Leach, R. M., 1971. Role of manganese in mucopolysaccharide metabolism, Fed. Proc. 30: 991–994.Google Scholar
  29. Lenhert, P. G., Crowfoot-Hodgkin, D., 1961. Structure of the 5, 6-dimethylbenzimidazolyleobamide coenzyme, Nature (London) 192: 937–938.Google Scholar
  30. Lewis, C. E., 1959. The biological actions of vanadium. I. Effects upon serum cholesterol levels in man, AMA Arch. Ind. Health 19: 419–425.Google Scholar
  31. Lines, E. W., 1935. J. Council Sci. Ind. Res. 8: 117.Google Scholar
  32. Lombeck, I., Kasperek, K., Feinendegen, L. E., Bremer, H. J., 1980. Rubidium — a possible essential trace element, Biol. Trace Element Res. 2: 193–198.Google Scholar
  33. Marston, H. R., 1935. J. Council Sci. Ind. Res. 8:111, quoted by Underwood, E. J., in Trace Elements in Human Animal Nutrition, 3rd ed., Academic, New York, 1972, pp. 141–168.Google Scholar
  34. McHargue, J. S., 1925. The association of copper with substances containing the fat soluble A vitamin, Am. J. Physiol. 72: 583–594.Google Scholar
  35. McHargue, J. S., 1926. Further evidence that small quantities of copper, manganese zinc are factors in the metabolism of animals, Am. J. Physiol. 77: 245–255.Google Scholar
  36. McLean, J. W., Thompson, G. G., Claxon, J. H., 1959. Growth responses to selenium in lambs, Nature (London) 184: 251.CrossRefGoogle Scholar
  37. Messer, H. H., Armstrong, W. D., Singer, L., 1972a. Fertility impairment in mice following low fluoride intake, Science 177: 893–894.PubMedCrossRefGoogle Scholar
  38. Messer, H. H., Wong, K., Wegner, M., 1972b. Effect of reduced fluoride intake of mice on hematocrit values, Nature ( London ), New Biol. 240: 218–220.Google Scholar
  39. Muth, O. H., Oldfield, J. E., Rennert, L. F., Schubert, J. R., 1958, Effects of selenium vitamin E on white muscle disease, Science 128: 1090.PubMedCrossRefGoogle Scholar
  40. Nielsen, F. H., Givad, S. H., Myron, D. R., 1975. Evidence for a possible requirement for arsenic by the rat, Fed. Proc. 34: 923–925.Google Scholar
  41. Nielsen, F. H., Ollerich, D. A., 1974. Nickel: A new trace element, Fed. Proc. 33: 1767–1769.Google Scholar
  42. O’Dell, B. L., Hardwick, B. C., Reynolds, G., Savage, J. E., 1961. Connective tissue defect in the chick resulting from copper deficiency, Proc. Soc. Exp. Biol. Med. 108: 402–404.Google Scholar
  43. Patterson, E. L., Milstrey, R., Stokstad, E. L. R., 1957. Effect of selenium in preventing exudative diathesis in chicks, Proc. Soc. Exp. Biol. Med. 95: 617–620.Google Scholar
  44. Pories, W. J., Henzel, J. H., Rob, C. G., Strain, W. H., 1967. Acceleration of wound healing, Lancet 1: 121–124.PubMedCrossRefGoogle Scholar
  45. Prasad, A. S., Halsted, J. A., Nadimi, M., 1961. Syndrome of iron deficiency anemia, hepatosplenomegaly, dwarfism, hypogonadism, geophagia, Am. J. Med. 31: 532–546.Google Scholar
  46. Prasad, A. S., Miale, A., Farid, Z., Schulert, A., Sandstead, H. H., 1963. Zinc metabolism in normals patients with the syndrome of iron deficiency, anemia, hypogonadism dwarfism, J. Lab. Clin. Med. 61: 537–549.Google Scholar
  47. Raulin, J., 1870. Études chimiques sur la végétation, Ann. Sci. Nat. Bot., 5th ser. 51: 93–299.Google Scholar
  48. Rotruck, J. T., Hoekstra, W. G., Pope, A. L., Ganther, H., Swanson, A. B., Hafeman, D. G., 1972. Relation of selenium to GSH peroxidase, Fed. Proc. 31: 691 (Abstract 2684).Google Scholar
  49. Schnegg, A., Kirchgessner, M., 1975. Zur Essentialität von Nickel fur das tierische Wachstum, Ztschr. Tierphysiol., Tierernaehrung u. Futtermittelkunde 36: 63–74.Google Scholar
  50. Schrauzer, G. N., 1979a. Klaus Schwarz, 1914–1978, Commemoration of a leader in trace element research, in Trace Metals in Health Disease, N. Kharash (ed.), Raven Press, New York, pp. 251–261.Google Scholar
  51. Schrauzer, G.N., 1979b. Trace elements in carcinogenesis, Advances in Nutritional Research, Vol. 2, H. Draper (ed.), Plenum, New York, pp. 219–244 references therein.Google Scholar
  52. Schrauzer, G. N., 1980. In Memoriam Eric John Underwood, Biol. Trace Elements Res. 2: 231–234.Google Scholar
  53. Schwarz, K., 1944, Über einen ernaehrungsbedingten, tödlichen Leberschaden und seine Verhütung durch Leberschutzstoffe. Z. Physiolog. Chem. 281: 101–108.Google Scholar
  54. Schwarz, K., 1951. Production of dietary necrotic liver degeneration using American Torula yeast, Proc. Soc. Exp. Biol. Med. 80: 319–323.Google Scholar
  55. Schwarz, K., 1975, Neuere Erkenntnisse über den essentiellen Charakter einiger Spurenelemente, in Spurenelemente in der Entwicklung von Mensch und Tier, K. Betke, F. Bindlingmaier (eds.), Urban und Schwarzenberg, München, pp. 1–30.Google Scholar
  56. Schwarz, K., 1977, Essentiality versus toxicity of metals, in Clinical Chemistry Chemical Toxicology of Metals, S. S. Brown (ed.), Elsevier/North Holland Biomedical Press, New York, Amsterdam, pp. 3–22.Google Scholar
  57. Schwarz, K., Foltz, C. M., 1957. Selenium as an integral part of factor 3 against necrotic liver degeneration, J. Am. Chem. Soc. 79: 3292.Google Scholar
  58. Schwarz, K., Bieri, J. G., Briggs, G. M., Scott, M. L., 1957. Prevention of exudative diathesis in chicks by factor 3 selenium, Proc. Soc. Exp. Biol. Med. 95: 621–625.Google Scholar
  59. Schwarz, K., Mertz, W., 1959. Chromium(III) the glucose tolerance factor, Arch. Biochem. Biophys. 85: 292–295.Google Scholar
  60. Schwarz, K., Milne, D. B., 1971, Growth effects of vanadium in the rat, Science 174: 425.CrossRefGoogle Scholar
  61. Schwarz, K., Milne, D. B., 1972a, Fluorine requirement for growth in the rat, Bioinorg. Chem. 1: 331–358.Google Scholar
  62. Schwarz, K., Milne, D. B., 1972b. Growth promoting effects of silicon in rats. Nature (London) 239: 333–334.CrossRefGoogle Scholar
  63. Schwarz, K., Milne, D. B., Vinyard, E., 1970. Growth effects of tin compounds in rats maintained in a trace element-controlled environment, Biochem. Biophys. Res. Commun. 40: 22–29.Google Scholar
  64. Smith, J. C., Schwarz, K., 1967. A controlled environment system for new trace element deficiencies, J. Nutr. 93: 182–188.PubMedGoogle Scholar
  65. Smith, S. E., Koch, B. A., Turk, K. L., 1951. The response of cobalt-deficient lambs to liver extract vitamin B12, J. Nutr. 44: 455–459.PubMedGoogle Scholar
  66. Todd, W. R., Elvehjem, C. A., Hart, E. B., 1934. Zinc in the nutrition of the rat, Am. J. Physiol. 107: 146–156.Google Scholar
  67. Tucker, H. F., Salmon, W. D., 1955. Parakeratosis or zinc deficiency disease in the pig, Proc. Soc. Exp. Biol. Med. 88: 613.Google Scholar
  68. Vallee, B. L., Wacker, W. E. C., Bartholomay, A. F., Robin, E. D., 1956. Zinc metabolism in hepatic dysfunction. I. Serum zinc concentrations in Laennec’s cirrhosis their validation by sequential analysis, New Engl. J. Med. 255: 403–408.Google Scholar
  69. Vallee, B. L., Wacker, W. E. C., Bartholomay, A. F., Hoch, F. L., 1957. Zinc metabolism in hepatic dysfunction. II. Correlation of metabolic patterns with biochemical findings, New Engl. J. Med. 257: 1055–1065.Google Scholar
  70. Underwood, E. J., Filmer, J. F., 1935. Aust. Vet. J. 11:84–88; see Underwood, E. J., in Trace Elements in Human Animal Nutrition, 3rd ed., Academic, New York, 1971, pp. 123–156.Google Scholar
  71. Vohora, S. B., 1982. Earth Elements Man, Department of Philosophy of Medicine, Inst, of Hist, of Medicine Medical Research, Hamdard Nagar, New Delhi-110062, India.Google Scholar
  72. Zhu, Mei-Nuan, 1980. An exploration of the chemical mechanism for Kashin-Beck’s disease environmental factors — multivariate functional relationship of molybdenum with biogeochemical environment, Huan Ching K’o Hsueh l(3):31–37 Chem. Abstr. 21: 53876 (1980).Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Gerhard N. Schrauzer
    • 1
  1. 1.University of California at San DiegoLa JollaUSA

Personalised recommendations