Advertisement

Boron

  • Carol J. Lovatt
  • W. M. Dugger
Part of the Biochemistry of the Elements book series (BOTE, volume 3)

Abstract

Boron is the only nonmetal in a family otherwise comprised of active metals, Group III A of the periodic table. As expected, boron exhibits bonding and structural characteristics intermediate to both. Like carbon (atomic number 6), boron (atomic number 5) has a tendency to form double bonds and macromolecules. In addition, there are several features that are more or less unique to boron and this group of elements. These include electron-deficient molecules (such as boron trifluoride) and bridge bonds (such as those in diborane, B2H6). These tendencies have formed the basis for the many hypotheses attempting to predict the mode of action of boron as a nutrient essential to the metabolism of vascular plants (Section 17.2.1), as a toxicant to animals (Section 17.1.5), and for achieving boron accumulation in cancer cells (Section 17.1.8).

Keywords

Pollen Tube Cotton Fiber Cucurbita Pepo Pyrimidine Nucleotide Boron Deficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albert, L. S., 1965. Ribonucleic acid content, boron deficiency symptoms and elongation of tomato root tips, Plant Physiol. 40: 649–652.PubMedCrossRefGoogle Scholar
  2. Albert, L. S., Wilson, C. M., 1961. Effect of boron on elongation of tomato root tips, Plant Physiol. 36: 244–251.PubMedCrossRefGoogle Scholar
  3. Alexander, T. R., 1942. Anatomical and physiological responses of squash to various levels of boron supply, Bot. Gaz. 103: 475–491.Google Scholar
  4. Alvarado, F., Sols, A., 1957. Borate and phosphoglucose isomerase in the assay of phospho- mannose isomerase, Biochim. Biophys. Acta 25: 75–77.Google Scholar
  5. Anderson, G. R., Jordan, J. V., 1961. Boron: a non-essential growth factor for Azotobacter chroococcum, Soil Sci. 92: 113–116.CrossRefGoogle Scholar
  6. Arnon, D. I., Stout, P. R., 1939. The essentiality of certain elements in minute quantities for plants with special reference to copper, Plant Physiol. 14: 371–375.PubMedCrossRefGoogle Scholar
  7. Augsten, H., Eichhorn, B., 1976. Biochemistry and physiology of the effect of boron in plants, Biol. Rundsch. 14: 268–285.Google Scholar
  8. Birnbaum, E. H., Beasley, C. A., Dugger, W. M., 1974. Boron deficiency in unfertilized cotton ( Gossypium hirsutum) ovules grown in vitro, Plant Physiol. 54: 931–935.Google Scholar
  9. Birnbaum, E. H., Dugger, W. M., Beasley, C. A., 1977. Interaction of boron with components of nucleic acid metabolism in cotton ovules cultured in vitro, Plant Physiol. 59: 1034–1038.PubMedCrossRefGoogle Scholar
  10. Blaser, H. W., Marr, C., Takahashi, D., 1967. Anatomy of boron-deficient Thuja plicata, Am. J. Bot. 54: 1107–1113.Google Scholar
  11. Bohnsack, C. W., 1974. Early effects of boron deficiency on indoleacetic acid oxidase levels, peroxidase localization and ethylene evolution of root tips of squash, Ph.D. thesis, University of Rhode Island, Kingston.Google Scholar
  12. Bohnsack, C. W., Albert, L. S., 1977. Early effects of boron deficiency on indoleacetic acid oxidase levels of squash root tips, Plant Physiol. 59: 1047–1050.PubMedCrossRefGoogle Scholar
  13. Bowen, J. E., and Gauch, H. G., 1965. Essentiality of boron for Dryopteris dentata and Selaginella apoda, Am. Fern Journal 55: 67–73.Google Scholar
  14. Bowen, J. E., Gauch, H. G., 1966. Non-essentiality of boron in fungi and the nature of its toxicity, Plant Physiol. 41: 319–324.PubMedCrossRefGoogle Scholar
  15. Bowen, J. E., Gauch, H. G., Krauss, R. W., Galloway, R. A., 1965. The nonessentiality of boron for Chlorella, J. Phycol. 1: 151–154.CrossRefGoogle Scholar
  16. Chapman, K. S. R., Jackson, J. F., 1974. Increased RNA labelling in boron-deficient root-tip segments, Phytochemistry 13: 1311–1318.CrossRefGoogle Scholar
  17. Cohen, M. S., Albert, L. S., 1974. Autoradiographic examination of meristems of intact boron- deficient squash roots treated with tritiated thymidine, Plant Physiol. 54: 766–768.PubMedCrossRefGoogle Scholar
  18. Cohen, M. S., Lepper, R., 1977. Effect of boron on cell elongation and division in squash roots, Plant Physiol. 59: 884–887.PubMedCrossRefGoogle Scholar
  19. Coke, L., Whittington, W. J., 1968. The role of boron in plant growth. IV. Interrelationships between boron and indol-3yl-acetic acid in the metabolism of bean radicles, J. Exp. Bot. 19: 295–308.Google Scholar
  20. Cresswell, C. F., Nelson, H., 1973. The influence of boron on the RNA level, a amylase activity, and level of sugars in germinating Themeda triandra Forsk seed, Ann. Bot. 37: 427–438.Google Scholar
  21. Crisp, P., Collier, G. F., Thomas, T. H., 1976. The effect of boron on tip-burn and auxin activity in lettuce, Scientia Hort. 5: 215–226.CrossRefGoogle Scholar
  22. Dave, I. C., Kannan, S., 1980. Boron deficiency and its associated enhancement of RNAase activity in bean plants, Z. Pflanzenphysiol. 97: 261–263.Google Scholar
  23. Davis, A. R., Marloth, R. H., Bishop, C. J., 1928. The inorganic nutrition of the fungi: I. The relation of calcium and boron to growth and spore formation, Phytopathology 18: 949.Google Scholar
  24. Davis, D., Addo, P. E. A., 1957. Boron toxicity in Lycopersicon esculentum L., Plant Physiol. 32 (Suppl.): 23.Google Scholar
  25. Dear, J., Aronoff, S., 1965. Relative kinetics of chlorogenic and caffeic acids during the onset of boron deficiency in sunflower, Plant Physiol. 40: 458–459.PubMedCrossRefGoogle Scholar
  26. Dickinson, D. B., 1978. Influence of borate and pentaerythritol concentrations on germination and tube growth of Lilium longiflorum pollen, J. Am. Soc. Hort. Sci. 103: 413–416.Google Scholar
  27. Dugger, W. M., 1973. Functional aspects of boron in plants, in Trace Elements in the Environment, E. Kothny (ed.), Advances in Chemistry Series, Vol. 123, pp. 112–129.Google Scholar
  28. Dugger, W. M., 1983. Boron in plant metabolism, in Inorganic Plant Nutrition, Encyclopedia of Plant Physiology, Vol. 15, A. Lauchli and R. L. Bieleski (eds.), Springer-Verlag, Heidelberg, pp. 626–650.Google Scholar
  29. Dugger, W. M., Jr., Humphreys, T. E., 1960. Influence of boron on enzymatic reactions associated with biosynthesis of sucrose, Plant Physiol. 35: 523–530.PubMedCrossRefGoogle Scholar
  30. Dugger, W. M., Humphreys, T. E., Calhoun, B., 1957. The influence of boron on starch phosphorylase and its significance in translocation of sugars in plants, Plant Physiol. 32: 364–370.PubMedCrossRefGoogle Scholar
  31. Dugger, W. M., Palmer, R. L., 1980. Effect of boron on incorporation of glucose from UDP Glucose into cotton fibers grown in vitro, Plant Physiol. 65: 266–273.PubMedCrossRefGoogle Scholar
  32. Dutta, J. J., Mcllrath, W. J., 1964. Effects of boron on growth and lignification in sunflower tissue and organ cultures, Bot. Gaz. 125: 89–96.Google Scholar
  33. Dyar, J. J., Webb, K. L., 1961. A relationship between boron and auxin in 14C translocation in bean plants, Plant Physiol. 36: 672–676.PubMedCrossRefGoogle Scholar
  34. Eaton, F. M., 1940. Interrelations in the effects of boron and indoleacetic acid on plant growth, Bot. Gaz. 101: 700–705.Google Scholar
  35. Eichhorn, V. M., Augsten, H., 1974. Influence of boron on the populations of Wolffia arrhiza (L.) Wimm. of different ages cultivated in chemostat, Biochem. Physiol. Pflanzen. 165: 371–385.Google Scholar
  36. El-Sheikh, A. M., Ulrich, A., Awad, S. K., Mawardy, A. E., 1971. Boron tolerance of squash, melon, cucumber, and corn, J. Am. Soc. Hort. Sci. 96: 53–57.Google Scholar
  37. Eyster, C., 1952. Necessity of boron for Nostoc muscorum, Nature 170: 755.PubMedCrossRefGoogle Scholar
  38. Foster, J. W., 1949. Chemical Activities of Fungi, Academic Press, New York.Google Scholar
  39. Gauch, H. G., Dugger, W. M., Jr., 1953. The role of boron in the translocation of sucrose, Plant Physiol. 28: 457–466.PubMedCrossRefGoogle Scholar
  40. Gauch, H. G., Dugger, W. M., Jr., 1954. The Physiological Action of Boron in Higher Plants: A Review and Interpretation, Univ. of Maryland Agr. Exp. Stat. Bulletin #A-80 (Technical): 1–43.Google Scholar
  41. Gerloff, G. C., 1968. The comparative boron nutrition of several green and blue-green algae, Physiol. Plant. 21: 369–377.Google Scholar
  42. Gorter, C. J., 1958. Synergism of indole and indole-3-acetic acid in root production of Phaseolus cuttings, Physiol. Plant. 11: 1–9.Google Scholar
  43. Handschumacher, R. E., Pasternack, C. A., 1958. Inhibition of orotidylic acid decarboxylase, a primary site of carcinostasis by 6-azauracil, Biochim. Biophys. Acta 30: 451–452.Google Scholar
  44. Hinde, R. W., Finch, L. R., 1966. The activities of phosphatases, pyrophosphatases and adenosine triphosphatases from normal and boron-deficient bean roots Phytochemistry 5: 619–623.Google Scholar
  45. Hinde, R. W., Finch, L. R., Cory, S., 1966. Amino acid-dependent ATP-pyrophosphate exchange in normal and boron deficient bean roots, Phytochemistry 5: 609–618.CrossRefGoogle Scholar
  46. Hirsch, A. M., Pengelly, W. L., Torrey, J. G., 1982. Endogenous IAA levels in boron-deficient and control root tips of sunflower, Bot. Gaz. 143: 15–19.Google Scholar
  47. Hirsch, A. M., Torrey, J. G., 1980. Ultrastructural changes in sunflower root cells in relation to boron deficiency and added auxin, Can. J. Bot. 58: 856–866.Google Scholar
  48. Hove, E., Elvehjem, C. A., Hart, E. B., 1939. Boron in animal nutrition, Am. J. Physiol. 127: 689–701.Google Scholar
  49. Jackson, J. F., Linskens, H. F., 1979. Pollen DNA repair after treatment with the mutagens 4-nitroquinoline-l-oxide, ultraviolet and near-ultraviolet irradiation, and boron dependence of repair, Molec. Gen. Genet. 176: 11–16.Google Scholar
  50. Jaweed, M. M., Scott, E. G., 1967. Effect of boron on ribonucleic acid metabolism in the apical meristems of sunflower plants, Proc. W. Virginia Acad. Sci. 39: 186–193.Google Scholar
  51. Johnson, D. L., 1971. Nucleic acid and protein contents of root tip cells from squash plants during development of and recovery from boron-deficiency and mitotic cell cycle changes in boron- deficient root tip cells, Ph.D. thesis, University of Rhode Island, Kingston.Google Scholar
  52. Johnson, D. L., Albert, L. S., 1967. Effect of selected nitrogen-bases and boron on the ribonucleic acid content, elongation and visible deficiency symptoms of tomato root tips, Plant Physiol. 42: 1307–1309.PubMedCrossRefGoogle Scholar
  53. Kliegel, W., 1972. Bor-Verbindungen aus pharmazeutisch-chemischer Sicht, Pharmazie, 1: 1–14.Google Scholar
  54. Kohl, H. C., Oertli, J. J., 1961. Distribution of boron in leaves, Plant Physiol. 36: 420–424.PubMedCrossRefGoogle Scholar
  55. Kouchi, H., Kumazawa, K., 1975a. Anatomical responses of root tips to boron deficiency. I. Effects of boron deficiency on elongation of root tips and their morphological characteristics, Soil Sci. Plant Nutr. 21: 21–28.Google Scholar
  56. Kouchi, H., Kumazawa, K., 1975b. Anatomical responses of root tips to boron deficiency. II. Effect of boron deficiency on the cellular growth and development in root tips, Soil Sci. Plant Nutr. 21: 137–150.Google Scholar
  57. Kouchi, H., Kumazawa, K., 1976. Anatomical responses of root tips to boron deficiency. III. Effect of boron deficiency on sub-cellular structure of root tips, particularly on morphology of cell wall and its related organelles, Soil Sci. Plant Nutr. 22: 53–71.Google Scholar
  58. Krueger, R. W., Lovatt, C. J., Tremblay, G. C., Albert, L. S., 1979. The metabolic requirement of Cucurbita pepo for boron, Plant Physiol. 63 (Suppl.): 115.Google Scholar
  59. Kumar, S., Hecht, A., 1970. Studies on growth and utilization of stylar carbohydrate by pollen tubes and callose development in self-incompatible Oenothera organensis, Biol. Plant. 12: 41–46.Google Scholar
  60. Lee, S., Aronoff, S., 1967. Boron in plants: A biochemical role, Science 158: 798–799.Google Scholar
  61. Lewin, J. C., 1966a. Physiological studies of the boron requirement of the diatom, Cylindrotheca fusiformis Reimann and Lewin, J. Exp. Bot. 17: 473–479.Google Scholar
  62. Lewin, J. C., 1966b. Boron as a growth requirement for diatoms, J. Phycol. 2: 160–163.CrossRefGoogle Scholar
  63. Lewin, J., Chen, C. H., 1976. Effects of boron deficiency on the chemical composition of a marine diatom, J. Exp. Bot. 27: 916–921.Google Scholar
  64. Lewis, D. H., 1980a. Boron lignification and the origin of vascular plants—a unified hypothesis, New Phytol. 84: 209–229.CrossRefGoogle Scholar
  65. Lewis, D. H., 1980b. Are there inter-relations between the metabolic role of boron, synthesis of phenolic phytoalexins and the germination of pollen? New Phytol. 84: 261–270.CrossRefGoogle Scholar
  66. Loughman, B. C., 1961. Effect of boric acid on the phosphoglucomutase of pea seeds, Nature 191: 1399–1400.PubMedCrossRefGoogle Scholar
  67. Lovatt, C. J., Albert, L. S., Tremblay, G. C., 1979. Regulation of pyrimidine biosynthesis in intact cells of Cucurbita pepo, Plant Physiol. 64: 562–569.PubMedCrossRefGoogle Scholar
  68. Lovatt, C. J., Albert, L. S., Tremblay, G. C, 1981. Synthesis, salvage, and catabolism of uridine nucleotides in boron-deficient squash roots, Plant Physiol. 68: 1389–1394.PubMedCrossRefGoogle Scholar
  69. Ludbrook, W. V., 1942. Effects of various concentrations of boron on the growth of pine seedlings, J. Aust. Inst. Agr. Sci. 8: 112–114.Google Scholar
  70. Mac Vicar, R., Burns, R. H., 1948. The relation of boron to certain plant oxidases, Arch. Biochem. 17: 31–39.Google Scholar
  71. Maevskaya, A. N., Troitskaya, E. A., Temp, G. A., 1974. Effect of boron deficits on activity of p-glucosidase in sunflower, Soviet Plant Physiol. 21: 505–507.Google Scholar
  72. Maevskaya, A. N., Troitskaya, E. A., Temp, G. A., Andreeva, E. N., 1975. Activity of β- glucosidase in plants with different boron requirements, Soviet Plant Physiol. 22: 476–480.Google Scholar
  73. Maevskaya, A. N., Troitskaya, E. A., Yakovleva, N. S., 1977. Effect of boron starvation on activity of p-glucosidase in plants of the families leguminosae and gramineae, Soviet Plant Physiol. 23: 1073–1076.Google Scholar
  74. Mamedova, T. K., Rasulov, F. A., 1977. Changes of free nucleotides in chick pea roots during growth under conditions of boron deficiency, Soviet Plant Physiol. 24: 521–524.Google Scholar
  75. Martini, F., Thellier, M., 1975. Study with the help of the 10B (n, a) 7Li nuclear reaction on the redistribution of boron in white clover after foliar application, Newslett. Applic. Nuclear Meth. Biol. Agr. 4: 26–29.Google Scholar
  76. McCoy, R. H., 1967, Dietary requirements of the rat, in The Rat in Laboratory Investigation, R. J. Farris and J. Q. Griffeth (eds.), Hafner Publishing Co., New York, pp. 68–103.Google Scholar
  77. Mcllrath, W. J., Skok, J., 1958. Boron requirement of Chlorella vulgaris, Bot. Gaz. 119: 231–233.Google Scholar
  78. Mengel, K., Kirby, E. A. (eds.), 1978. Principles of Plant Nutrition, International Potash Institute, Bern, Switzerland, pp. 483–494.Google Scholar
  79. Middleton, W., Jarvis, B. C., Booth, A., 1978. The boron requirement for root development in stem cuttings of Phaseolus aureus Roxb., New Phytol. 81: 287–297.CrossRefGoogle Scholar
  80. Middleton, W., Jarvis, B.C., Booth, A., 1980. The role of leaves in auxin and boron-dependent rooting of stem cuttings of Phaseolus aureus Roxb., New Phytol. 84: 251–259.CrossRefGoogle Scholar
  81. Mitchell, J. W., Dugger, W. M., Jr., Gauch, H. G., 1953. Increased translocation of plant- growth-modifying substances due to application of boron, Science 118: 354–355.PubMedCrossRefGoogle Scholar
  82. Neales, T. F., 1960. Some effects of boron on root growth, Aust. J. Biol. Sci. 13: 232–248.Google Scholar
  83. Odhnoff, C., 1957. Boron deficiency and growth, Physiol. Plant. 10: 984–1000.Google Scholar
  84. Oertli, J. J., Richardson, W. F., 1970. The mechanism of boron immobility in plants, Physiol. Plant. 23: 108–116.Google Scholar
  85. O’Kelley, J. C., 1957. Boron effects on growth, oxygen uptake and sugar absorption by germinating pollen, Am. J. Bot. 44: 239–244.Google Scholar
  86. Parish, R. W., 1968. In vitro studies on the relations between boron and peroxidase, Enzymologia 35: 239–252.PubMedGoogle Scholar
  87. Parish, R. W., 1969. Studies on the effect of calcium and boron on peroxidases of plant cell walls, Z. Pflanzenphysiol. 60: 211–216.Google Scholar
  88. Perkins, H. J., Aronoff, S., 1956. Identification of the blue fluorescent compounds in boron-deficient plants, Arch. Biochem. Biophys. 64: 506–507.Google Scholar
  89. Pollard, A. S., Parr, A. J., Loughman, B. C., 1977. Boron in relation to membrane function in higher plants, Exp. Bot. 28: 831–841.Google Scholar
  90. Potvin, B. W., Stern, H. J., May, S. R., Lam, G. F., Krooth, R. S., 1978. Inhibition by barbituric acid and its derivatives of the enzymes in rat brain which participate in the synthesis of pyrimidine nucleotides, Biochem. Pharmac. 27: 655–665.Google Scholar
  91. Rajaratnam, J. A., Lowry, J. B., 1974. The role of boron in the oil-palm ( Elaeis guineensis ), Ann. Bot. 38: 193–200.Google Scholar
  92. Raven, J. A., 1980. Short- and long-distance transport of boric acid in plants, New Phytol. 84: 231–249.CrossRefGoogle Scholar
  93. Reed, H. S., 1947. A physiological study of boron deficiency in plants, Hilgardia 17: 377–411.Google Scholar
  94. Robertson, G. A., Loughman, B. C., 1973. Rubidium uptake and boron deficiency in Vicia faba L., J. Exp. Bot. 24: 1046–1052.Google Scholar
  95. Robertson, G. A., Loughman, B.C., 1974a. Response to boron deficiency: A comparison with responses produced by chemical methods of retarding root elongation, New Phytol 73: 821–832.Google Scholar
  96. Robertson, G. A., Loughman, B. C., 1974b. Reversible effects of boron on the absorption and incorporation of phosphate in Vicia faba L., New Phytol. 73: 291–298.CrossRefGoogle Scholar
  97. Ross, C., 1964. Influence of 6-azauracil on pyrimidine metabolism of cocklebur leaf discs, Biochem. Biophys. Acta 87: 564–573.Google Scholar
  98. Roth-Bejerano, N., Itai, C., 1981. Effect of boron on stomatal opening in epidermal strips of Commelina communis, Physiol. Plant. 52: 302–304.Google Scholar
  99. Roush, A., Norris, E. R., 1950. The inhibition of xanthine oxidase by borates, Arch, Biochem. 29: 344–347.Google Scholar
  100. Roush, A. H., Gowdy, B. B., 1961. The inhibition of yeast alcohol dehydrogenase by borate, Biochim. Biophys. Acta 52: 200–202.Google Scholar
  101. Samorodov, V. N., Golubinskii, I. N., 1978. Stimulation of pear pollen germination under the effect of physiologically active substances, Ukr. Bot. Zh. 35: 401–406.Google Scholar
  102. Schinazi, R. F., Prusoff, W. H., 1978. Synthesis of 5-dihydroxyboryl-2’-deoxyuridine and related boron-containing pyrimidines, Am. Chem. Soc. 176(Suppl.):Abstr. 38.Google Scholar
  103. Schmucker, T., 1932. Bor als physiologisch entischeidendes element, Naturwissenchaften 20: 839.CrossRefGoogle Scholar
  104. Scott, E. G., 1960. Effect of supra-optimal boron levels on respiration and carbohydrate metabolism of Helianthus annuus, Plant Physiol. 35: 653–661.PubMedCrossRefGoogle Scholar
  105. Sherstnev, E. A., 1974. Protein and nucleic acid metabolism in plants during a boron deficiency, Biol. Rol Mikroelem. IKH Primen. Sel’sk. KOHZ. MED. 263–272.Google Scholar
  106. Sherstnev, E. A., Razumova, M. V., 1965. The effect of boron deficiency on the ribonuclease activity in young leaves of sunflower plants, Agrochimica 9: 348–350.Google Scholar
  107. Shive, J. B., Jr., Barnett, N. M., 1973. Boron deficiency effects of peroxidase, hydroxyproline, and boron in cells walls and cytoplasm of Helianthus annuus L. hypoctyls, Plant and Cell Physiol. 14: 573–583.Google Scholar
  108. Shkol’nik, M. Y., 1974. General conception of the physiological role of boron in plants, Soviet Plant Physiol. 21: 140 - 150.Google Scholar
  109. Shkol’nik, M. Y., Abysheva, L. N., 1975. Effect of boron deficiency on the level of the growth inhibitor flavonol-3-glycoside and other flavonoids in tomatoes, Fiziol. Biokhim. Kul’t. Rast. 7: 291–297.Google Scholar
  110. Shkol’nik, M. Y., Il’inskaya, N. L., 1975. Effect of a boron deficiency on activity of glucose- 6-phosphate dehydrogenase in plants with different boron requirements, Soviet Plant Physiol. 22: 695–699.Google Scholar
  111. Shkol’nik, M. Y., Kopman, I. V., 1970. Effect of boron on the phospholipid level in the sunflower, and the possible role of this element in the structural organization of a cell, Tr. Bot. Inst., Akad. Nauk USSR 20: 108–113.Google Scholar
  112. Shkol’nik, M. Y., Krupnikova, T. A., Dmitrieva, N. N., 1964. Influence of boron deficiency on some aspects of auxin metabolism in the sunflower and corn, Soviet Plant Physiol. 11: 164–169.Google Scholar
  113. Shkol’nik, M. Y., Soloviyova-Troitskaya, E. A., 1961. The physiological role of boron: I. Treatment of boron deficiency by nucleic acid, Bot. Zh. 46:161–173 Biol. Abstr. (1962) 39: 3694.Google Scholar
  114. Sisler, E. D., Dugger, W. M., Jr., Gauch, H. G., 1956. The role of boron in the translocation of organic compounds in plants, Plant Physiol. 31: 11–17.PubMedCrossRefGoogle Scholar
  115. Skok, J., 1958. The role of boron in the plant cell, in Trace Elements, C. A. Lamb, O. G. Bentley, and J. M. Beattie (eds.), Academic Press, New York, pp. 227–243.Google Scholar
  116. Smirnov, Y. S., Krupnikova, T. A., and Shkol’nik, M. Y., 1977. Content of IAA in plants with different sensitivity to boron deficits, Soviet Plant Physiol. 24: 270–276.Google Scholar
  117. Smith, K. W., Johnson, S. L., 1976. Borate inhibition of yeast alcohol dehydrogenase, Biochemistry 15: 560–564.Google Scholar
  118. Smyth, D. A., Dugger, W. M., 1980. Effects of boron deficiency on 86Rb uptake and photo-synthesis in the diatom Cylindrotheca fusiformis, Plant Physiol. 66: 692–695.PubMedCrossRefGoogle Scholar
  119. Smyth, D. A., Dugger, W. M., 1981. Cellular changes during boron-deficient culture of the diatom Cylindrotheca fusiformis, Physiol. Plant. 51: 111–117.Google Scholar
  120. Soloway, A. H., 1964. Boron compounds in cancer therapy, in Progress in Boron Chemistry, Vol. 1, H. Steinberg and A. L. McCloskey (eds.), Macmillan, New York, pp. 203–234.Google Scholar
  121. Sommer, A. L., and Lipman, C. B., 1926. Evidence of the indispensable nature of zinc and boron for higher green plants, Plant Physiol. 1: 231–249.PubMedCrossRefGoogle Scholar
  122. Spurr, A. R., 1952. Fluorescence in ultraviolet light in the study of boron deficiency in celery, Science 116: 421–423.PubMedCrossRefGoogle Scholar
  123. Spurr, A. R., 1957. The effect of boron on cell-wall structure in celery, Am. J. Bot. 44: 637–650.Google Scholar
  124. Stanley, R. G., Loewus, F. A., 1964, Boron and myo-inositol in pollen pectin biosynthesis, in Pollen Physiology and Fertilization, H. F. Linskens (ed.), North-Holland, Amsterdam, pp. 128–136.Google Scholar
  125. Subba Rao, D. V., 1981. Effect of boron on primary production of nanoplankton, Can. J. Fish. Aquat. Sci. 38: 52-58.Google Scholar
  126. Tanada, T., 1974. Boron-induced bioelectric field change in mung bean hypocotyl, Plant Physiol. 53: 775–776.PubMedCrossRefGoogle Scholar
  127. Tanada, T., 1978. Boron—key element in the actions of phytochrome and gravity? Planta 143: 109–111.CrossRefGoogle Scholar
  128. Tanada, T., 1982. Role of boron in the far-red delay of nyctinastic closure of Albizzia pinnules, Plant Physiol. 70: 320–321.PubMedCrossRefGoogle Scholar
  129. Teare, I. D., 1974. Boron nutrition and acid-soluble phosphorus compounds in bean roots, Hort Science 9: 236–238.Google Scholar
  130. Thellier, M., Duval, Y., De Marty, M., 1979. Borate exchanges of Lemna minor L. as studied with the help of the enriched stable isotopes of a (n, a) nuclear reaction, Plant Physiol. 63: 283–288.PubMedCrossRefGoogle Scholar
  131. Timashov, N. D., 1977. Effect of a boron deficiency on the incorporation of glucose-14C into fractions of polysaccharides of sunflower organ cell walls, Vestn. Khar’k. Univ. 158: 36–38.Google Scholar
  132. Troitskaya, E. A., Dranik, L. I., Shkol’nik, M. Y., 1970. Phenol composition of sunflower leaves during boron deficiency, Soviet Plant Physiol. 18: 328–330.Google Scholar
  133. Troitskaya, E. A., Maevskaya, A. N., Temp, G. A., 1975. Hydroxyproline content in cell walls of plants with different boron requirements, Soviet Plant Physiol. 22: 854–857.Google Scholar
  134. Uehara, K., Fujimoto, S., Taniguchi, T., 1974. Studies on violet-colored acid phosphatase of sweet potato. I. Purification and some physical properties, J. Biochem. 75: 627–638.Google Scholar
  135. Van de venter, H. A., Currier, H. B., 1977. The effect of boron deficiency on callose formation and 14C translocation in bean (Phaseolus vulgaris L.) and cotton ( Gossypium hirsutum L. ), Am. J. Bot. 64: 861–865.Google Scholar
  136. Vaughan, A. K. F., 1977. The relation between the concentration of boron in the reproductive and vegetative organs of maize plants and their development, Rhod. J. Agric. Res. 15: 163–170.Google Scholar
  137. Wainwright, I. M., Palmer, R. L., Dugger, W. M., 1980. The pyrimidine pathway in boron-deficient cotton fiber, Plant Physiol. 65: 893–896.PubMedCrossRefGoogle Scholar
  138. Walker, R. B., Gessel, S. P., Haddock, P. G., 1955. Greenhouse studies in mineral requirements of conifers: Western red cedar, Forest Sci. 1: 51–60.Google Scholar
  139. Warington, K., 1923. The effect of boric acid and borax on the broad bean and certain other plants, Ann. Bot. 37: 629–672.Google Scholar
  140. Watanabe, R., Chorney, W., Skok, J., Wender, S. H., 1964. Effect of boron deficiency on polyphenol production in the sunflower, Phytochemistry 3: 391–394.CrossRefGoogle Scholar
  141. Watanabe, R., Mcllrath, W. J., Skok, J., Chorney, W., Wender, S. H., 1961. Accumulating of scopoletin glucoside in boron deficient tobacco leaves, Arch. Biochim. Biophys. 94: 241–243.Google Scholar
  142. Weiser, C. J., 1959. Effect of boron on the rooting of clematis cuttings, Nature 183: 559–560.CrossRefGoogle Scholar
  143. Whittington, W. J., 1959. The role of boron in plant growth. II. The effect on the growth of the radicle, J. Exp. Bot. 10: 93–103.CrossRefGoogle Scholar
  144. Wilcox, L. V., 1960. Boron Injury to Plants, USD A Agriculture Information Bulletin No. 211.Google Scholar
  145. Wilson, C. M., 1961. Cell wall carbohydrates in tobacco pith parenchyma as affected by boron deficiency and by growth in tissue culture, Plant Physiol. 36: 336–341.PubMedCrossRefGoogle Scholar
  146. Winfield, M. E., 1945. The role of boron in plant metabolism. III. The influence of boron on certain enzyme systems, Aust. J. Exp. Biol. Med. Sci. 23: 267–273.PubMedCrossRefGoogle Scholar
  147. Yamanouchi, M., 1973. The role of boron in higher plants (Part 2), The influence of boron on the formation of pectic substances, Bull. Fac. Agric. Gottori, 25: 21–27.Google Scholar
  148. Yasunobu, K. T., Norris, E. R., 1957. Mechanism of borate inhibition of diphenol oxidation by tyrosinase, J. Biol. Chem. 227: 473–482.PubMedGoogle Scholar
  149. Yih, R. Y., Hille, F. K., Clark, H. E., 1966. Requirement of Ginkgo pollen-derived tissue cultures for boron and the effects of boron deficiency, Plant Physiol. 41: 815–820.PubMedCrossRefGoogle Scholar
  150. Zapata, R. M., 1973. Studies on the roles of boron in growth and sugar-transport processes of sugarcane, J. Agric. Univ. Puerto Rico. LVII: 9–23.Google Scholar
  151. Zittle, C. A., 1951. Reaction of borate with substances of biological interest, in Advances in Enzymology and Related Subject of Biochemistry, F. F. Nord (ed.), Vol. 12, Interscience, New York, pp. 493–527.Google Scholar
  152. Zittle, C. A., Delia Monica, E. S., 1950. Effects of borate and other ions on the alkaline phosphatase of bovine milk and intestinal mucosa, Arch. Biochem. 26: 112–122.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Carol J. Lovatt
    • 1
  • W. M. Dugger
    • 1
  1. 1.Department of Botany and Plant SciencesUniversity of CaliforniaRiversideUSA

Personalised recommendations