• Forrest H. Nielsen
  • Eric O. Uthus
Part of the Biochemistry of the Elements book series (BOTE, volume 3)


Since ancient times, arsenicals have been characterized by actions both benevolent and malevolent. The sulfides of arsenic—realgar (tetraarsenic tetrasulfide) and orpiment (arsenic trisulfide)—were mentioned by the Greeks and Romans prior to the Christian era. However, pure arsenic apparently was unknown to these ancient civilizations. Because arsenic has such a long history, only a few highlights will be presented here. These highlights were obtained from reviews by Vallee et al. (1960), Schroeder and Balassa (1966), Frost (1970), Klevay (1976), and Bruckner and Dietze (1980).


Zinc Deficiency Inorganic Arsenic Arsenic Trioxide Arsenic Compound Dimethylarsinic Acid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Almquist, H. J., Grau, C. R., 1944. Interrelation of methionine, choline, betaine and arseno-choline in the chick, J. Nutr. 27: 263–269.Google Scholar
  2. Andreae, M. O., Klumpp, D., 1979. Biosynthesis and release of organoarsenic compounds by marine algae, Environ. Sci. Technol. 13: 738–741.Google Scholar
  3. Anke, M., Grün, M., Partschefeld, M., 1976. The essentiality of arsenic for animals, in Trace Substances in Environmental Health, Vol. 10, D. D. Hemphill (ed.), University of Missouri, Columbia, pp. 403–409.Google Scholar
  4. Anke, M., Grün, M., Partschefeld, M., Groppel, B., Hennig, A., 1978. Essentiality and function of arsenic, in Trace Element Metabolism in Man and Animals—3, M. Kirchgessner (ed.), Tech. Univ. München, Freising-Weihenstephan, BRD, pp. 248–252.Google Scholar
  5. Anke, M., Groppel, B., Grün, M., Hennig, A., Meissner, D., 1980. The influence of arsenic deficiency on growth, reproductiveness, life expectancy and health of goats, in 3. Spurenelement—Symposium Arsen, M. Anke, H.-J. Schneider, and Chr. Bruckner (eds.), Friedrich- Schiller-Universität, Jena, GDR, pp. 25–32.Google Scholar
  6. Bencko, V., Symon, K., 1970. The cumulation dynamics in some tissue of hairless mice inhaling arsenic, Atmos. Environ. 4: 157–161.Google Scholar
  7. Benson, A. A., Summons, R. E., 1981. Arsenic accumulation in great barrier reef invertebrates, Science 211: 482–483.PubMedCrossRefGoogle Scholar
  8. Benson, A. A., Cooney, R. V., Summons, R. E., 1980. Arsenic metabolism — a way of life in the sea, in 3. Spurenelement—Symposium Arsen, M. Anke, H.-J. Schneider, and Chr. Bruckner (eds.), Friedrich-Schiller-Universitat, Jena, GDR, pp. 139–145.Google Scholar
  9. Bruckner, Chr., Dietze, B., 1980. Arsenic in history, in 3. Spurenelement—Symposium Arsen, M. Anke, H.-J. Schneider, and Chr. Bruckner (eds.), Friedrich-Schiller-Universität, Jena, GDR, pp. 5–10.Google Scholar
  10. Buchet, J. P., Lauwerys, R., Roels, H., 1981. Urinary excretion of inorganic arsenic and its metabolites after repeated ingestion of sodium metaarsenite by volunteers, Int. Arch. Occup. Environ. Health 48: 111–118.Google Scholar
  11. Calesnick, B., Wase, A., Overby, L. R., 1966. Availability during human consumption of the arsenic in tissues of chicks fed arsanilic-74As acid, Toxicol. Appl. Pharmacol. 9: 27–30.Google Scholar
  12. Cannon, J. R., Edmonds, J. S., Francesconi, K. A., Raston, C. L., Saunders, J. B., Skelton, B. W., White, A. H., 1981. Isolation, crystal structure and synthesis of arsenobetaine, a constituent of the western rock lobster, the dusky shark, and some samples of human urine, Aust. J. Chem. 34: 787–798.Google Scholar
  13. Challenger, F., 1978. Biosynthesis of organometallic and organometalloidal compounds, ACS Symp. Ser. 82: 1–22.Google Scholar
  14. Cikrt, M., Bencko, V., Tichy, M., Benes, B., 1980. Bilary excretion of 74As and its distribution in the golden hamster after administration of 74As (III) and 74As (V), J. Hyg. Epidemiol. Microbiol. Immunol. 24: 384–388.Google Scholar
  15. Cooney, R. V., Benson, A. A., 1980. Arsenic metabolism in Homarus americanus, Chemosphere 9: 335–341.CrossRefGoogle Scholar
  16. Crecelius, E. A., 1977. Changes in the chemical speciation of arsenic following ingestion by man, Environ. Health Perspect. 19: 147–150.Google Scholar
  17. Cristau, B., Chabas, E., Placidi, M., 1975. L’acide p. arsanilique est-il biotransformé chez le rat et le cobaye, Ann. Pharm. Fr. 33: 37–41.Google Scholar
  18. Cullen, W. R., Froese, C. L., Lui, A., McBride, B. C., Patmore, D. J., Reimer, M., 1977. The aerobic methylation of arsenic by microorganisms in the presence of L-methionine-methyl- d3, J. Organomet. Chem. 139: 61–69.Google Scholar
  19. Cullen, W. R., McBride, B. C., Pickett, A. W., 1979. The transformation of arsenicals by Candida humicola, Can. J. Microbiol. 25: 1201–1205.Google Scholar
  20. Diplock, A. T., Mehlert, A., 1980. The effect of arsenic and vitamin E on the uptake and distribution in the rat of 75Se-labelled sodium selenite, in 3. Spurenelemente—Symposium Arsen, M. Anke, H.-J. Schneider, Chr. Bruckner (eds.), Friedrich-Schiller-Universität, Jena, GDR, pp. 75–81.Google Scholar
  21. Done, A. K., Peart, A. J., 1971. Acute toxicities of arsenical herbicides, Clin. Toxicol. 4: 343–355.Google Scholar
  22. Dutkiewicz, T., 1977. Experimental studies on arsenic absorption routes in rats, Environ. Health Perspect. 19: 173–177.Google Scholar
  23. Edmonds, J. S., Francesconi, K. A., 1981a. Isolation and identification of arsenobetaine from the American lobster Homarus americanus, Chemosphere 10: 1041–1044.CrossRefGoogle Scholar
  24. Edmonds, J. S., Francesconi, K. A., 1981b. Arseno-sugars from brown kelp ( Ecklonia radiata) as intermediates in cycling of arsenic in a marine ecosystem, Nature 289: 602–604.Google Scholar
  25. Edmonds, J. S., Francesconi, K. A., Hansen, J. A., 1982. Dimethyloxarsylethanol from anaerobic decomposition of brown kelp (Ecklonia radiata): A likely precursor of arsenobetaine in marine fauna, Experientia 38: 643–644.Google Scholar
  26. El-Begearmi, M. M., Ganther, H. E., Sunde, M. L., 1982. Dietary interaction between methylmercury, selenium, arsenic, and sulfur amino acids in Japanese quail, Poult. Sci. 61: 272–279.Google Scholar
  27. Freeman, H. C., Uthe, J. F., Fleming, R. B., Odense, P. H., Ackman, R. G., Landry, G., Musial, C., 1979. Clearance of arsenic ingested by man from arsenic contaminated fish, Bull. Environ. Contam. Toxicol. 22: 224–229.Google Scholar
  28. Frost, D. V., 1970. Tolerances for arsenic and selenium: A psychodynamic problem, World Rev. Pest Control 9: 6–28.Google Scholar
  29. Fuentes, N., Zambiano, F., Rosenmann, M., 1981. Arsenic contamination: Metabolic effects and localization in rats, Comp. Biochem. Physiol. C 70C: 269–272.Google Scholar
  30. Gresser, M. J., 1981. ADP-arsenate. Formation by submitochondrial particle under phosphorylating conditions, J. Biol. Chem. 256: 5981–5983.Google Scholar
  31. Harrison, J. W. E., Packman, E. W., Abbott, D. D., 1958. Acute oral toxicity and chemical and physical properties of arsenic trioxides, AM A Arch. Ind. Health 17: 118–123.Google Scholar
  32. Herrera-Lasso, J. M., Benson, A. A., 1982. Arsenic detoxication in Macrocystis pyrifera, Environ. Sci. Res. 23: 501–505.Google Scholar
  33. Hoffmann, G., Anke, M., Grün, M., Groppel, B., Riedel, E., 1980. Absorption, distribution and excretion of 76arsenic in hens and ruminants, in 3. Spurenelement—Symposium Arsen, M. Anke, H.-J. Schneider, and Chr. Bruckner (eds.), Friedrich-Schiller-Universität, Jena, GDR, pp. 41–48.Google Scholar
  34. Hove, E., Elvehjem, C. A., Hart, E. B., 1938. Arsenic in the nutrition of the rat, Am. J. Physiol. 124: 205–212.Google Scholar
  35. Huang, C.-H., Mitchell, R. A., 1971. Stimulation by arsenate of ATP-driven energy-linked reduction of NAD+ by succinate, Biochem. Biophys. Res. Comm. 44: 1102–1108.Google Scholar
  36. Hwang, S. W., Schanker, L. S., 1973. Absorption of organic arsenical compounds from the rat small intestine, Xenobiotica 3: 351–355.PubMedCrossRefGoogle Scholar
  37. Irgolic, K. J., Woolson, E. A., Stockton, R. A., Newman, R. D., Bottino, N. R., Zingaro, R. A., Kearny, P. C., Pyles, R. A., Maeda, S., McShane, W. J., Cox, E. R., 1977. Characterization of arsenic compounds formed by Daphnia magna and Tetraselmis Chuii from inorganic arsenate, Environ. Health Perspect. 19: 61–66.Google Scholar
  38. Jaffe, K., Apitz-Castro, R., 1977. Studies on the mechanism by which inorganic arsenate facilitates the enzymatic reduction of dihydroxyacetone by a-glycerophosphate dehydrogenase, FEBS Lett. 80: 115–118.PubMedCrossRefGoogle Scholar
  39. Jelinek, C. F., Corneliussen, 1977. Levels of arsenic in the United States food supply, Environ. Health Perspect. 19: 83–87.Google Scholar
  40. Klassen, C. D., 1974. Biliary excretion of arsenic in rats, rabbits and dogs, Toxicol. Appl. Pharmacol. 29: 447–457.Google Scholar
  41. Klevay, L. M., 1976. Pharmacology and toxicology of heavy metals: Arsenic, Pharmacol. Ther. A 1: 189–209.Google Scholar
  42. Klumpp, D. W., Peterson, P. J., 1981. Chemical characteristics of arsenic in a marine food chain, Marine Biol. 62: 297–305.CrossRefGoogle Scholar
  43. Kurosawa, S., Yasuda, K., Taguchi, M., Yamazaki, S., Toda, S., Morita, M., Uehiro, T., Fuwa, K., 1980. Identification of arsenobetaine, a water soluble organo-arsenic compound in muscle and liver of a shark, Prionace glaucus, Agric. Biol. Chem. 44: 1993–1994.Google Scholar
  44. Lagunas, R., 1980. Sugar-arsenate esters: Thermodynamics and biochemical behavior, Arch. Biochem. Biophys. 205: 67–75.Google Scholar
  45. Larsen, N. A., Pakkenberg, H., Damsgaard, E., Heydorn, K., 1979. Topographical distribution of arsenic, manganese, and selenium in the normal human brain, J. Neurol. Sci. 42: 407–416.Google Scholar
  46. Levander, O. A., 1977. Metabolic interrelationships between arsenic and selenium, Environ. Health Perspect. 19: 159–164.Google Scholar
  47. Lindgren, A., Dencker, L., 1980. Preliminary study on the long time retention of arsenite and arsenate in epididymis, thyroid and lens in mice, in 3. Spurenelement—Symposium Arsen, M. Anke, H.-J. Schneider, and Chr. Bruckner (eds.), Friedrich-Schiller-Universitat, Jena, GDR, pp. 57–63.Google Scholar
  48. Lunde, G., 1977. Occurrence and transformation of arsenic in the marine environment, Environ. Health Perspect. 19: 47–52.Google Scholar
  49. Mangal, P. C., Singh, G., 1980. Uptake of selenium-75 and its interaction with arsenic, cadmium and mercury in the rat, Proc. Indian Nat. Sci. Acad. B46: 615–620.Google Scholar
  50. Marafante, E., Bertolero, F., Edel, J., Pietra, R., Sabbioni, E., 1982. Intracellular interaction and biotransformation of arsenite in rats and rabbits, Sci. Total Environ. 24: 27–39.Google Scholar
  51. McBride, B. C., Wolfe, R. S., 1971. Biosynthesis of dimethylarsine by methanobacterium, Biochemistry 10: 4312–4317.PubMedCrossRefGoogle Scholar
  52. McChesney, E. W., Hoppe, J. O., McAuliff, J. P., Banks, W. F., Jr., 1962. Toxicity and physiological disposition of sodium p-N-glycolylarsanilate. I. Observations in the mouse, cat, rat and man. Toxicol. Appl. Pharmacol. 4: 14–23.Google Scholar
  53. Moxon, A. L., 1938. The effect of arsenic on the toxicity of seleniferous grains, Science 88: 81.PubMedCrossRefGoogle Scholar
  54. National Academy of Sciences, 1977. Arsenic, Report of the Committee on Medical and Biologic Effects of Environmental Pollutants, Washington, D.C.Google Scholar
  55. Nielsen, F. H., Givand, S. H., Myron, D. R., 1975. Evidence of a possible requirement for arsenic by the rat, Fed. Proc., Fed. Am. Soc. Exp. Biol. 34: 923 (abs).Google Scholar
  56. Nielsen, F. H., Myron, D. R., Uthus, E. O., 1978. Newer trace elements—vanadium (V) and arsenic (As) deficiency signs and possible metabolic roles, in Trace Element Metabolism in Man and Animals-3, M. Kirchgessner (ed.), Tech. Univ. Miinchen, Freising-Weihenstephan, BRD, pp. 244–247.Google Scholar
  57. Nielsen, F. H., Uthus, E. O., Cornatzer, W. E., 1983. Arsenic possibly influences carcinogenesis by affecting arginine and zinc metabolism, Biol. Trace Element Res. 5: 389–397.Google Scholar
  58. Nissen, P., Benson, A. A., 1982. Arsenic metabolism in fresh water and terrestrial plants, Physiol. Plant. 54: 446–450.Google Scholar
  59. Norm, H., Christakopoulos, A., 1982. Evidence for the presence of arsenobetaine and another organoarsenical in shrimps, Chemosphere 11: 287–298.CrossRefGoogle Scholar
  60. Pfannhauser, W., and Woidich, H., 1980. Source and distribution of heavy metals in food, Toxicol. Environ. Chem. Rev. 3: 131–144.Google Scholar
  61. Pomroy, C., Charbonneau, S. M., McCullough, R. S., Tam, G. K. H., 1980. Human retention studies with 74As, Toxicol. Appl. Pharmacol. 53: 550–556.Google Scholar
  62. Pyles, R. A., Woolson, E. A., 1982. Quantitation and characterization of arsenic compounds in vegetables grown in arsenic treated soil, J. Agric. Food Chem. 30: 866–870.Google Scholar
  63. Schroeder, H. A., Balassa, J. J., 1966. Abnormal trace metals in man: Arsenic, J. Chron. Dis. 19: 85–106.Google Scholar
  64. Shirachi, D. Y., Lakso, J. U., Rose, L. J., 1981. Methylation of sodium arsenate by rat liver in vitro, Proc. West. Pharmacol. Soc. 24: 159–160.Google Scholar
  65. Siewicki, T. C., Sydlowski, J. S., 1981. Excretion of arsenic by rats fed witch flounder or cacodylic acid, Nutr. Reports Int. 24: 121–127.Google Scholar
  66. Stevens, J. T., Hall, L. L., Farmer, J. D., DiPasquale, L. C., Chernoff, N., Durham, W. F., 1977. Disposition of 14C and/or 74As-cacodylic acid in rats after intravenous, intratracheal, or peroral administration, Environ. Health Perspect. 19: 151–157.Google Scholar
  67. Tam, G. K. H., Charbonneau, S. M., Bryce, F., Lacroix, G., 1978. Separation of arsenic metabolites in dog plasma and urine following intravenous injection of 74As, Anal. Biochem. 86: 505–511.Google Scholar
  68. Tarn, G. K. H., Charbonneau, S. M., Bryce, F., Pomroy, C., Sandi, E., 1979a. Metabolism of inorganic arsenic (74As) in humans following oral ingestion, Toxicol. Appl. Pharmacol. 50: 319–322.Google Scholar
  69. Tam, G. K. H., Charbonneau, S. M., Lacroix, G., and Bryce, F., 1979b. In vitro methylation of 74As in urine, plasma and red blood cells of human and dog, Bull. Environ. Contam. Toxicol. 22: 69–71.Google Scholar
  70. Tam, G. K. H., Charbonneau, S. M., Bryce, F., Sandi, E., 1982. Excretion of a single oral dose of fresh-arsenic in man, Bull. Environ. Contam. Toxicol. 28: 669–673.Google Scholar
  71. Uthus, E. O., Cornatzer, W. E., Nielsen, F. H., 1983. Consequences of arsenic deprivation in laboratory animals, in Arsenic Symposium, Production and Use, Biomedical and Environmental Perspectives, W. H. Lederer (ed.), Van Nostrand Reinhold, New York, pp. 173–189.Google Scholar
  72. Vahter, M., 1981. Biotransformation of trivalent and pentavalent inorganic arsenic in mice and rats, Environ. Res. 25: 286–293.Google Scholar
  73. Vahter, M., Gustafsson, B., 1980. Biotransformation of inorganic arsenic in germfree and conventional mice, in 3. Spurenelement—Symposium Arsen, M. Anke, H.-J. Schneider, Chr. Bruckner (eds.), Friedrich-Schiller-Universität, Jena, GDR, pp. 123–129.Google Scholar
  74. Vallee, B. L., Ulmer, D. D., Wacker, W. E. C., 1960. Arsenic toxicology and biochemistry, A.M.A. Arch. Indust. Health 21: 132–151.Google Scholar
  75. Wrench, J. I., Addison, R. F., 1981. Reduction, methylation, and incorporation of arsenic into lipids by the marine phytoplankton Dunaliella tertiolecta, Can. J. Fish. Aquat. Sci. 38: 518–523.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Forrest H. Nielsen
    • 1
    • 2
  • Eric O. Uthus
    • 1
    • 2
  1. 1.Agricultural Research Service, Grand Forks Human Nutrition Research CenterU.S. Department of AgricultureGrand ForksUSA
  2. 2.Department of BiochemistryUniversity of North DakotaGrand ForksUSA

Personalised recommendations