Historically, the first study of the biological action of nickel was reported in 1826 when the oral nickel toxicity signs exhibited by rabbits and dogs were described. Between 1853 and 1912 numerous other studies on the pharmacologic and toxicologic actions of various nickel compounds were described. The findings from these studies were summarized by Nriagu (1980a). The first reports on the presence of nickel in plant and animal tissues appeared in 1925 (Berg, 1925; Bertrand and Macheboeuf, 1925). Although Bertrand and Nakamura (1936) first suggested that nickel may be an essential element, conclusive evidence for essentiality did not appear until 1970–1975. Thus, most of the studies on the biochemical, nutritional, and physiological roles of nickel were done subsequent to 1970.


Dietary Iron Hand Eczema Jack Bean Urease Acetogenic Bacterium Liver Total Lipid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anke, M., Kronemann, H., Groppel, B., Hennig, A., Meissner, D., Schneider, H.-J., 1980. The influence of nickel-deficiency on growth, reproduction, longevity and different biochemical parameters of goats, in 3. Spurenelement-Symposium Nickel, M. Anke, H.-J. Schneider, and Chr. Brüchner (eds.), Friedrich-Schiller-Universität, Jena, GDR, pp. 3–10.Google Scholar
  2. Anke, M., Grün, M., Hoffmann, G., Groppel, B., Gruhn, K., Faust, H., 1981. Zinc metabolism in ruminants suffering from nickel-deficiency, in Mengen- und Spurenelement, M. Anke and H.-J. Schneider (eds.), Karl-Marx-Universität, Leipzig, GDR, pp. 189–196.Google Scholar
  3. Becker, G., Dörstelmann, U., Frommberger, U., Forth, W., 1980. On the absorption of cobalt(II)- and nickel(II)-ions by isolated intestinal segments in vitro of rats, in 3. Spurenelement- Symposium Nickel, M. Anke, H.-J. Schneider, and Chr. Brückner (eds.), Friedrich-Schiller- Universität, Jena, GDR, pp. 79–85.Google Scholar
  4. Berg, R., 1925. Das Vorkommen seltener Elemente in den Nahrungsmitteln und menschlichen Ausscheidungen, Biochem. Z. 165: 461–462.Google Scholar
  5. Bertrand, G., Macheboeuf, M., 1925. Sur la presence der nickel et du cobalt chez les animaux, C.R. Acad. Sci. ( Paris ) 180: 1380–1383.Google Scholar
  6. Bertrand, G., Nakamura, H., 1936. Recherches sur 1’importance physiologique du nickel et due cobalt, Bull. Soc. Sci. Hyg. Aliment. 24: 338–343.Google Scholar
  7. Christensen, O. B., Möller, H., 1975. External and internal exposure to the antigen in the hand eczema of nickel allergy, Contact Derm. 1: 136 - 141.PubMedCrossRefGoogle Scholar
  8. Christensen, O. B., Möller, H., Andrasko, L., Lagesson, V., 1979. Nickel concentration of blood, urine and sweat after oral administration, Contact Derm. 5: 312–316.PubMedCrossRefGoogle Scholar
  9. Cronin, E., Di Michiel, A. D., Brown, S. S., 1980. Oral challenge in nickel-sensitive women with hand eczema, in Nickel Toxicology, S. S. Brown and F. W. Sunderman, Jr. (eds.), Academic Press, New York, pp. 149–152.Google Scholar
  10. Dixon, N. E., Gazzola, C., Asher, C. J., Lee, D. S. W., Blakeley, R. L., Zerner, B., 1980a. Jack bean urease (EC II. The relationship between nickel, enzymatic activity, and the “abnormal” ultraviolet spectrum. The nickel content of jack beans, Can. J. Biochem. 58: 474–480.Google Scholar
  11. Dixon, N. E., Blakeley, R. L., Zerner, B., 1980b. Jack bean urease (EC III. The involvement of active-site nickel ion in inhibition by ß-mercaptoethanol, phosphoramidate, and fluoride, Can. J. Biochem. 58: 481–488.Google Scholar
  12. Friedrich, B., Heine, E., Finck, A., Friedrich, C. G., 1981. Nickel requirement for active hydrogenase formation in Alcaligenes eutrophus, J. Bacteriol. 145: 1144–1149.PubMedGoogle Scholar
  13. Jacobsen, N., Alfheim, I., Jonsen, J., 1978. Nickel and strontium distribution in some mouse tissues passage through placenta and mammary glands, Res. Comm. Chem. Pathol. Pharmacol. 20: 571–584.Google Scholar
  14. Jones, D. C., May, P. M., Williams, D. R., 1980. Computer stimulation models of low- molecular-weight nickel(II) complexes and therapeuticals in vivo, in Nickel Toxicology, S. Brown and F. W. Sunderman, Jr. (eds.), Academic Press, New York, pp. 73–76.Google Scholar
  15. Kaspizak, K. S., Sunderman, F. W., Jr., 1979. Radioactive 63Ni in biological research, Pure Appl. Chem. 51: 1375–1389.Google Scholar
  16. Kearns, L. P., and Sigee, D. C., 1980. The occurrence of period IV elements in dinoflagellate chromatin: An x-ray microanalytical study, J. Cell Sci. 46: 113–127.Google Scholar
  17. Kersten, W. J., Brooks, R. R., Reeves, R. D., Jaffre, T., 1980. Nature of nickel complexes in Psychotria douarrei and other nickel-accumulating plants, Phytochemistry 19: 1963 - 1965.CrossRefGoogle Scholar
  18. Kirchgessner, M., Roth-Maier, D. A., Schnegg, A., 1981. Progress of nickel metabolism and nutrition research, in Trace Element Metabolism in Man and Animals (TEMA-4), J. McC. Howell, J. M. Gawthorne, and C. L. White (eds.), Australian Academy of Sciences, Canberra, pp. 621–624.Google Scholar
  19. Kirchgessner, M., Pallauf, J., 1973. Zum Einfluss von Fe-, Co-, bzw. Ni-Zulagen be Zink-mangel, Zeit. Tierphysiol. Tierernaehr. FuttermitteIkd. 31: 268–274.Google Scholar
  20. Kirchgessner, M., Schnegg, A., 1980. Biochemical and physiological effects of nickel defi-ciency, in Nickel in the Environment, J. O. Nriagu (ed.), Wiley, New York, pp. 635–652.Google Scholar
  21. Kirchgessner, M., Roth-Maier, D. A., Schnegg, A., 1981. Progress of nickel metabolism and nutrition research, in Trace Element Metabolism in Man and Animals (TEMA-4), J. McC. Howell, J. M. Gawthorne, and C. L. White (eds.), Australian Academy of Sciences, Canberra, pp. 621–624.CrossRefGoogle Scholar
  22. Lu, C.-C., Matsumoto, N., Iijima, S., 1981. Placental transfer and body distribution of nickel chloride in pregnant mice, Toxicol. App. Pharmacol. 59: 409–413.Google Scholar
  23. Lucassen, M., Sarkar, B., 1979. Nickel(II)-binding constituents of human blood serum, J. Toxicol. Environ. Health 5: 897–905.Google Scholar
  24. Mackay, E. M., Pateman, J. A., 1980. Nickel requirement of a urease-deficient mutant in Aspergillus nidulans, J. Gen. Microbiol. 116: 249–251.Google Scholar
  25. Morgan, W. T., 1981. Interactions of the histidine-rich glycoprotein of serum with metals, Biochemistry 20: 1054–1061.Google Scholar
  26. Nielsen, F. H., 1977. Nickel toxicity, in Advances in Modern Toxicology, Vol. 2, Toxicology of Trace Elements, R. A. Goyer, M. A. Mehlman (eds.), Wiley, New York, pp. 129–146.Google Scholar
  27. Nielsen, F. H., 1980a. Evidence of the essentiality of arsenic, nickel, and vanadium and their possible nutritional significance, in Advances in Nutritional Research, Vol. 3, H. H. Draper (ed.), Plenum, New York, pp. 157–172.Google Scholar
  28. Nielsen, F. H., 1980b. Possible functions and medical significance of the abstruse trace metals, in Inorganic Chemistry in Biology and Medicine, ACS Symposium Series No. 140, A. E. Martell (ed.), American Chemical Society, Washington, D.C., pp. 23–42.CrossRefGoogle Scholar
  29. Nielsen, F. H., 1980c. Interactions of nickel with essential minerals, in Nickel in the Environment, J. O. Nriagu (ed.), Wiley, New York, pp. 611–634.Google Scholar
  30. Nielsen, F. H., Uthus, E. O., Hunt, C. D., 1982. Interactions between the “newer” trace elements and other essential nutrients, in New Zealand Workshop on Trace Elements in New Zealand Proceedings, J. V. Dunckley (ed.), University of Otago, Dunedin, N.Z., pp. 165–173.Google Scholar
  31. Nriagu, J. O. (ed.) 1980a. Nickel in the Environment, Wiley, New York.Google Scholar
  32. Nriagu, J. O., 1980b. Global cycle and properties of nickel, in Nickel in the Environment, J. O. Nriagu (ed.), Wiley, New York, pp. 1–26.Google Scholar
  33. Ragan, H. A., 1978. Effects of iron deficiency on absorption of nickel, Northwest Lab. Annual Rep. DOE Assist. Seer. Environ., PNL-2500-PT. 1, pp. 1. 9–1. 10.Google Scholar
  34. Reeves, M. W., Pine, L., Hunter, S. H., George, J. R., Harrell, W. K., 1981. Metal requirements of Legionella pneumophilia, J. Clin. Microbiol. 13: 688–695.Google Scholar
  35. Spears, J. W., Hatfield, E. E., 1980. Role of nickel in ruminant nutrition, in 3. Spurenelement- Symposium Nickel, M. Anke, H.-J. Schneider, and Chr. Brückner (eds.), Friedrich-Schiller-Universität, Jena, GDR, pp. 47–53.Google Scholar
  36. Spears, J. W., Hatfield, E. E., Forbes, R. M., 1978. Interrelationship between nickel and zinc in the rat, J. Nutr. 108: 307–312.PubMedGoogle Scholar
  37. Sunderman, F. W., Jr., 1977. A review of the metabolism and toxicology of nickel, Ann. Clin. Lab. Sci. 7: 377–398.Google Scholar
  38. Tabillion, R., Weber, F., Kaltwasser, H., 1980. Nickel requirement for chemolithotrophic growth in hydrogen-oxidizing bacteria, Arch. Microbiol. 124: 131–136.Google Scholar
  39. Takeda, A., Fukuyama, K., Ohtani, O., Epstein, W. L., 1981. Regulation of RNase activity by interaction of trace elements with histidine-rich protein from newborn rat epidermis, Biol. Trace Element Res. 3: 317–326.Google Scholar
  40. Thauer, R. K., Diekert, G., Schönheit, P., 1980. Biological role of nickel, Trends Biochem. Sci. ( Pers. Ed. ) 5: 304–306.Google Scholar
  41. Van Baalen, C., and O’Donnell, R., 1978. Isolation of a nickel-dependent blue-green alga, J. Gen. Microbiol. 105: 351–353.Google Scholar
  42. Welch, R. M., 1981. The biological significance of nickel, J. Plant Nutr. 3: 345–356.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Forrest H. Nielsen
    • 1
  1. 1.Agricultural Research Service, Grand Forks Human Nutrition Research CenterU.S. Department of AgricultureGrand ForksUSA

Personalised recommendations