• Barbara J. Stoecker
  • Leon L. Hopkins
Part of the Biochemistry of the Elements book series (BOTE, volume 3)


Vanadium was unequivocally discovered in 1830 by Sefström in Sweden. Sefström named the element after the Norse goddess of beauty, Vanadis, because of the rich colors of its derivatives. H. E. Roscoe made major contributions to the early study of vanadium and published numerous papers from 1868 to 1871 that provided the basis for subsequent work (Clark, 1973).


Vanadium Content Vanadium Compound Vanadium Concentration Dietary Protein Level Flameless Atomic Absorption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balfour, W. E., Grantham, J. J., Glynn, I. M., 1978. Vanadate-stimulated natriuresis, Nature 275: 768.PubMedCrossRefGoogle Scholar
  2. Byerrum, R. U., Eckardt, R. E., Hopkins, L. L., Libsch, J. F., Rostoker, W., Zenz, C., 1974.Google Scholar
  3. Vanadium, National Academy of Sciences, Washington, D.C.Google Scholar
  4. Cantley, L. C., Jr., Aisen, P., 1979. The fate of cytoplasmic vanadium. Implications on (Na, K)-ATPase inhibition, J. Biol. Chem. 254: 1781–1784.Google Scholar
  5. Cantley, L. C., Jr., Josephson, L., Warner, R., Yanagisawa, M., Lechene, C., Guidotti, G., 1977. Vanadate is a potent (Na, K)-ATPase inhibitor found in ATP derived from muscle, J. Biol. Chem. 252: 7421–7423.Google Scholar
  6. Cantley, L. C., Jr., Resh, M. D., Guidotti, G., 1978. Vanadate inhibits the red cell (Na+, K+) ATPase from the cytoplasmic side, Nature 272: 552–554.Google Scholar
  7. Clark, R. J. H., 1973. Vanadium, in Comprehensive Inorganic Chemistry, J. C. Bailar, H. J. Emeleus, S. R. Nyholm, and A. F. Trotman-Dickenson (eds.), Vol. 3, Pergamon Press, Oxford, pp. 491–551.Google Scholar
  8. Cornelis, R., and Versieck, J., 1982. Determination of vanadium in tissues and serum, Clin. Chem. 28: 1708.Google Scholar
  9. Crews, M. G., Hopkins, L. L., 1981. Metabolism and toxicity in vanadium, in Systemic Aspects of Biocompatibility, Vol. I, D. F. Williams (ed.), CRC Press, Inc., Boca Raton, Fl., pp. 179–186.Google Scholar
  10. Dailey, N. S., Mashburn, S. A., Winslow, S. G., 1981. Toxicity of selected vanadium compounds: A bibliography with abstracts, 1965–1980, Federation of American Societies for Experimental Biology, Bethesda, Md.Google Scholar
  11. Dingley, A. L., Kustin, K., Macara, I. G., McLeod, G. C., 1981. Accumulation of vanadium by tunicate blood cells occurs via a specific anion transport system, Biochim. Biophys. Acta 649: 493–502.Google Scholar
  12. Dubyak, G. R., Kleinzeller, A., 1980. The insulin-mimetic effects of vanadate in isolated rat adipocytes. Dissociation from effects of vanadate as a (Na+-K+)ATPase inhibitor, J. Biol. Chem. 255: 5306–5312.Google Scholar
  13. Erdmann, E., Werdan, K., Krawietz, W., Lebuhn, M., Christl, S., 1980. Significance of NADH-vanadate-oxidoreductase of cardiac and erythrocyte cell membranes, Basic Res. Cardiol. 75: 460–465.Google Scholar
  14. Golden, M. H., Golden, B. E., 1981. Trace elements. Potential importance in human nutrition with particular reference to zinc and vanadium, Br. Med. Bull. 37: 31–36.Google Scholar
  15. Grantham, J. J., 1980. The renal sodium pump and vanadate, Am. J. Physiol. 239: F97–106.PubMedGoogle Scholar
  16. Hackbarth, I., Schmitz, W., Scholz, H., Erdmann, E., Krawietz, W., Philipp, G., 1978. Positive inotropism of vanadate in cat papillary muscle, Nature 275: 67.PubMedCrossRefGoogle Scholar
  17. Hafez, Y. S., Kratzer, F. H., 1976. The effect of diet on the toxicity of vanadium, Poultry Sci. 55: 918–922.Google Scholar
  18. Hansard, S. L., Ammerman, C. B., Henry, P. R., Simpson, C. F., 1982. Vanadium metabolism in sheep. 1. Comparative and acute toxicity of vanadium compounds in sheep, J. Anim. Sci. 55: 344–349.Google Scholar
  19. Hill, C. H., 1979. The effect of dietary protein levels on mineral toxicity in chicks, J. Nutr. 109: 501 - 507.PubMedGoogle Scholar
  20. Hopkins, L. L., Jr., and Mohr, H. E., 1971. The biological essentiality of vanadium, in Newer Trace Elements in Nutrition, W. Mertz and W. E. Cornatzer (eds.), Dekker, New York, pp. 195 - 213.Google Scholar
  21. Hopkins, L. L., Jr., Mohr, H. E., 1974. Vanadium as an essential nutrient, Fed. Proc. 33: 1773-1775.Google Scholar
  22. Hopkins, L. L., Jr., Tilton, B. E., 1966. Metabolism of trace amounts of vanadium 48 in ratorgans and liver subcellular particles, Am. J. Physiol. 211: 169–172.Google Scholar
  23. Ikebe, K., Tanaka, R., 1979. Determination of vanadium and nickel in marine samples by flameless and flame atomic absorption spectrophotometry, Bull. Environ. Contam. Toxicol. 21: 526–532.Google Scholar
  24. Kiviluoto, M., 1980. Observations on the lungs of vanadium workers, Br. J. Ind. Med. 37: 363–366.Google Scholar
  25. Lees, R. E. M., 1980. Changes in lung function after exposure to vanadium compounds in fuel oil ash, Br. J. Med. 37 (3): 253–256.Google Scholar
  26. MacDonald, E., LeRoy, A., Linnoila, M., 1982. Failure of lithium to counteract vanadate- induced inhibition of red blood cell membrane Na+, K+-ATPase, Lancet ii A.Google Scholar
  27. Meisch, H. U., Bielig, H. J., 1980. Chemistry and biochemistry of vanadium, Basic Res. Cardiol. 75: 413–417.Google Scholar
  28. Menon, A. S., Rau, M., Ramasarma, T., Crane, F. L., 1980. Vanadate inhibits mevalonate synthesis and activates NADH oxidation in microsomes, FEBS Lett. 114: 139–141.PubMedCrossRefGoogle Scholar
  29. Myron, D. R., Givand, S. H., Nielsen, F. H., 1977. Vanadium content of selected foods as determined by flameless atomic absorption spectroscopy, J. Agric. Food. Chem. 25: 297–300.Google Scholar
  30. Myron, D. R., Zimmerman, T. J., Shuler, T. R., Klevay, L. M., Lee, D. E., Nielsen, F. H., 1978. Intake of nickel and vanadium by humans. A survey of selected diets, Am. J. Clin. Nutr. 31: 527–531.Google Scholar
  31. Naylor, G. J., Smith, A. H., 1981. Vanadium: A possible aetiological factor in manic depressive illness, Psychol. Med. 11: 249–256.Google Scholar
  32. Nielsen, F. H., and Ollerich, D. A., 1973. Studies on a vanadium deficiency in chicks, Fed. Proc. 32: 929.Google Scholar
  33. Nielsen, F. H., Hunt, C. D., Uthus, E. O., 1980. Interactions between essential trace and ultratrace elements, Ann. N.Y. Acad. Sci. 355: 152–164.Google Scholar
  34. Parker, R. D., Sharma, R. P., 1978. Accumulation and depletion of vanadium in selected tissues of rats treated with vanadyl sulfate and sodium orthovanadate, J. Environ. Pathol. Toxicol. 2: 235–245.Google Scholar
  35. Peabody, R. A., Wallach, S., Verch, R. L., Kraszeski, J., 1976. Metabolism of vanadium-48 in normal and endocrine-deficient rats, in Trace Substances in Environmental Health-X, D. D. Hemphill (ed.), University of Missouri, Columbia, pp. 441 - 450.Google Scholar
  36. Peabody, R. A., Wallach, S., Verch, R. L., and Lifschitz, M. L., 1977. Effect of thyroxin and growth hormone replacement on vanadium metabolism in hypophysectomized rats, in Trace Substances in Environmental Health-XI, D.D. Hemphill (ed.), University of Missouri, Colum-bia, pp. 297–304.Google Scholar
  37. Ramasarma, T., and Crane, F. L., 1981. Does vanadium play a role in cellular regulation? Current Topics in Cellular Regulation 20: 247–301.PubMedGoogle Scholar
  38. Robinson, J. D., 1981. Effect of cations on (Ca2+ + Mg2+)-activated ATPase from rat brain, J. Neurochem. 37: 140–146.Google Scholar
  39. Rubinson, K. A., 1981. Concerning the form of biochemically active vanadium, Proc. Roy. Soc. Lond. ( Biol. ) 212: 65–84.Google Scholar
  40. Sabbioni, E., Marafante, E., Rade, J., Gregotti, C., Di Nucci, A., Manzo, L., 1981. Biliary excretion of vanadium in rats, Toxicol. Eur. Res. 3: 93–98.Google Scholar
  41. Sakurai, H., Goda, T., Shimomura, S., 1982. Vanadyl ( IV) ion dependent enhancement of oxygen binding to hemoglobin and myoglobin, Biochem. Biophys. Res. Comm. 107: 1349–1354.Google Scholar
  42. Schroeder, H. A., Balassa, J. J., Tipton, I. H., 1963. Abnormal trace metals in man—vanadium, J. Chron. Dis. 16: 1047–1071.Google Scholar
  43. Schwarz, K., and Milne, D. B., 1971. Growth effects of vanadium in the rat, Science 174: 426–428.PubMedCrossRefGoogle Scholar
  44. Sharma, R. P., Oberg, S. G., Parker, R. D., 1980. Vanadium retention in rat tissues following acute exposures to different dose levels, J. Toxicol. Environ. Health 6: 45–54.Google Scholar
  45. Shechter, Y., and Karlish, S. J., 1980. Insulin-like stimulation of glucose oxidation in rat adipocytes by vanadyl ( IV) ions, Nature 284: 556–558.Google Scholar
  46. Siemon, H., Schneider, H., and Fuhrmann, G. F., 1982. Vanadium increases selective K+-per-meability in human erythrocytes, Toxicology 22: 271–278.CrossRefGoogle Scholar
  47. Söremark, R., 1967. Vanadium in some biological specimens, J. Nutr. 92: 183–190.PubMedGoogle Scholar
  48. Strasia, C. A., 1971. Vanadium: Essentiality and toxicity in the laboratory rat, Ph.D. Dissertation, University Microfilms, Ann Arbor, Mich.Google Scholar
  49. Underwood, E. J., 1977. Vanadium, Trace Elements in Human and Animal Nutrition, 4th ed., Academic Press, New York, pp. 388–397.Google Scholar
  50. Welch, R. M., Cary, E. E., 1975. Concentration of chromium, nickel, and vanadium in plant materials, J. Agric. Food Chem. 23: 479–782.Google Scholar
  51. Weigmann, T. B., Day, H. D., Patak, R. V., 1982. Intestinal absorption and secretion of radioactive vanadium (48V03~) in rats and effect of Al(OH)3, J. Toxicol. Environ. Health 10: 233–245.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Barbara J. Stoecker
    • 1
  • Leon L. Hopkins
    • 1
  1. 1.Department of Food and NutritionTexas Tech UniversityLubbockUSA

Personalised recommendations