Advertisement

Acoustic Emission for In-Process Monitoring and Microstructure Control?

  • H. N. G. Wadley
  • R. Mehrabian

Abstract

Acoustic emissions are the elastic waves emitted by sudden localized changes of stress by, for example, the formation of cracks, plasticity, and phase transformations. It is beginning to be considered a potential in-process monitoring technique for quality and productivity improvement as a sensor for closed loop feedback control systems. Applications of the technique are held back because of its complicated nature and because the signals are controlled rather subtly by microstructure. In this review we describe the theoretical framework that has begun to emerge and which now provides a physical understanding of acoustic emission. We then reconsider the results of laboratory studies and recent applications to assess, in the light of this understanding, the contribution acoustic emission methods might make toward in-process monitoring and microstructure control during metals processing.

Keywords

Acoustic Emission Elastic Wave Acoustic Emission Signal High Carbon Steel Resistance Spot Welding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. N. G. Wadley, C. B. Scruby, and J. Speake, Int. Met. Rev. 25(2), 41 (1980).CrossRefGoogle Scholar
  2. 2.
    W. Sachse and N. Hsu, Physical Acoustics XIV (1980).Google Scholar
  3. 3.
    J. C. Spanner, “Advances in Acoustic Emission,” Proc. Int. Conf. Acoustic Emission, Anaheim, CA (1979)Google Scholar
  4. 3a.
    H. L. Dunegan and W. F. Hartman, Eds., Dunhart (1981).Google Scholar
  5. 4.
    J. M. Carlyle, J. Acoustic Soc. Am., Suppl. 1, 68, S104 (1980).Google Scholar
  6. 5.
    C. Scruby, H. Wadley, and J. Sinclair, Phil Mag A, 44(2), 249 (1981).CrossRefGoogle Scholar
  7. 6.
    N. Hsu, J. A. Simmons, and S. C. Hardy, Mat. Eval. 35, 100 (1977).Google Scholar
  8. 7.
    H. N. G. Wadley, C. B. Scruby, and G. Shrimpton, Acta Metallogr. 29, 399 (1980).CrossRefGoogle Scholar
  9. 8.
    H. N. G. Wadley and C. B. Scruby, AERE-R10351, “Elastic Wave Radiation from Cleavage Crack Extension” (1982).Google Scholar
  10. 9.
    J. A. Simmons and R. B. Clough, “Dislocation Modeling of Physical Systems,” Proc. Int. Conf., Gainesville, FL, June 1980, Pergamon Press (1981).Google Scholar
  11. 10.
    C. B. Scruby, J. C. Collingwood, and H. N. G. Wadley, J. Phys. D. 11, 2359 (1978).CrossRefGoogle Scholar
  12. 11.
    C. B. Scruby, H. N. G. Wadley, and J. J. Hill, AERE-R10534, “Dynamic Elastic Displacements at the Surface of an Elastic Half-Space due to Defect Sources” (1982).Google Scholar
  13. 12.
    W. W. Gerberich and K. Jatarallobhula, Proc. Conf. Nondestructive Evaluation: Microstructure Characterization and Reliability Strategies, 5–9 Oct. 1980, Pittsburgh, PA.Google Scholar
  14. 13.
    H. N. G. Wadley and C. B. Scruby, Metal Science, 12, 285 (1978).CrossRefGoogle Scholar
  15. 14.
    K. Rusbridge, C. B. Scruby, and H. N. G. Wadley, AERE-R10363, “Origin of Acoustic Emission in Aged Al-Zn-Mg Alloys; Part I: The Base Ternary Alloy” (1982).Google Scholar
  16. 15.
    C. B. Scruby, H. N. G. Wadley, and K. Rusbridge, AERE-R10364, “Origin of Acoustic Emission in Al-Zn-Mg Alloys; Part II: Copper Containing Quarternary Alloys” (1982).Google Scholar
  17. 16.
    H. N. G. Wadley, C. B. Scruby, P. Lane, and J. A. Hudson, Metal Science 15, 514, Nov.-Dec. (1981).Google Scholar
  18. 17.
    C. B. Scruby and H. N. C. Wadley, 5th Int. Conf. on Quantitative NDE in the Nuclear Industry, San Diego, May 1982.Google Scholar
  19. 18.
    G. R. Speich and A. J. Schwoeble, ASTM STP-571, 40 (1975).Google Scholar
  20. 19.
    J. Baram and M. Rosen, Scripta Met. 13, 565 (1979).CrossRefGoogle Scholar
  21. 20.
    J. Baram and M. Rosen, Acta Metallogr. 30, 655 (1982).CrossRefGoogle Scholar
  22. 21.
    M. M. Shea and D. J. Harvey, Scripta Met. 16, 135 (1982).CrossRefGoogle Scholar
  23. 22.
    G. Cannelli and R. Cantelli, “Advances in Acoustic Emission,” Proc. Int. Conf. Acoustic Emission, Anaheim, CA (1979). H. L. Dunegan and W. F. Hartman, Eds., Dunhart (1981).Google Scholar
  24. 23.
    H. M. Tensi and W. Radtke, Metall. 32(7), 681 (1978).Google Scholar
  25. 24.
    J. Feurer and R. Wunderlin, Int. Conf. Solidification and Casting, Metals Society, London 2, 18 (1977).Google Scholar
  26. 25.
    H. N. G. Wadley, J. Simmons, C. K. Stockton, M. Rosen, and R. Mehrabian, DARPA/AF Review of Quantitative NDE, Aug. 2–7, 1981, Boulder, CO.Google Scholar
  27. 26.
    R. B. Clough and H. N. G. Wadley, Proceedings of 2nd Int. Conference on Use of Electron and Laser Beams for Metals Processing, Los Angeles, 1983.Google Scholar
  28. 27.
    S. J. Yahaviolos, M. F. Carlos, S. J. Slykhouje, and S. J. Ternowchek, Mat. Eval. 39, 1057 (1981).Google Scholar
  29. 28.
    D. W. Prine, Fifth International Acoustic Emission Symposium, Tokyo (1980).Google Scholar
  30. 29.
    P. G. Bentley, D. G. Dawson, and D. Prine, RNPDE Report ND-R-767(R) (1982).Google Scholar
  31. 30.
    P. Jax, Proc. 2nd Int. Conf. on Structural Mechanisms in Reactor Technology (Berlin) G614–EUR4820 (1973).Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • H. N. G. Wadley
    • 1
  • R. Mehrabian
    • 1
  1. 1.Center for Materials ScienceNational Bureau of StandardsUSA

Personalised recommendations