Advertisement

Opsonic Activity of Insect Hemolymph

  • Norman A. Ratcliffe
  • Andrew F. Rowley
Part of the Comparative Pathobiology book series (CPATH, volume 6)

Abstract

An opsonin can be defined as any substance in the blood which adsorbs on to the surface of foreign particles and increases their adhesion to phagocytic cells. Since adhesion is part of the recognition phase of phagocytosis it follows that, providing an energy source is available, enhanced recognition and binding usually result in increased engulfment and subsequent intracellular digestion of foreign material (Miler, 1973). In vertebrates, the opsonic activity of serum is attributed to antibody (normal or immune) and/or the complement system. Antibody may opsonize by itself or interact with complement components, which then follow the classical pathway through C1, C4, C2, and C3, to bring about opsonization. It has also been shown that sera from various animals deficient not only in antibody but also in the C4, C2, and C1 components have opsonic activity equivalent to normal sera, and that activation of C3 occurs via the alternative pathway and involves properdin and Factors A, B, and D (Hobart and McConnell, 1975; Stossel, 1975).

Keywords

Blue Crab Sheep Erythrocyte Galleria Mellonella Opsonic Activity Albumin Gland 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acton, R. T., and Weinheimer, P. F. (1974). Hemagglutinins: primitive receptor molecules operative in invertebrate defense mechanisms. Contemp. Top. Immunobiol., 5, 271–282.CrossRefGoogle Scholar
  2. Amirante, G. A., and Mazzalai, F. G. (1978). Synthesis and localization of hemagglutinins in hemocytes of the cockroach, Leuco-phaea maderae L. Dev. Comp. Immunol., 2, 735–740.PubMedCrossRefGoogle Scholar
  3. Amirante, G. A., De Bernardi, F. L., and Magnetti, P. C. (1976). Immunochemical studies on heteroagglutinins in the haemolymph of cockroach, Leucophaea maderae L. (Insecta, Dictyoptera). Boll. Zool., 43, 63–67.CrossRefGoogle Scholar
  4. Anderson, R. S. (1977). Biochemistry and physiology of invertebrate macrophages in vitro. Comp. Pathobiol., 3, 1–20.Google Scholar
  5. Anderson, R. S., and Good, R. A. (1976). Opsonic involvement in phagocytosis by mollusk hemocytes. J. Invertebr. Pathol., 27, 57–64.PubMedCrossRefGoogle Scholar
  6. Anderson, R. S., Day, N. K. B., and Good, R. A. (1972). Specific hemagglutinins and a modulator of complement in cockroach hemo-lymph. Infect. Immun., 5, 55–59.PubMedGoogle Scholar
  7. Anderson, R. S., Holmes, B., and Good, R. A. (1973). In vitrobactericidal capacity of Blaberus craniifer hemocytes. J. Invertebr. Pathol., 22, 127–135.PubMedCrossRefGoogle Scholar
  8. Bayne, C. J. (1973). Internal defense mechanisms of Octopus doflei-ni. Malacol. Rev., 6, 13–17.Google Scholar
  9. Bayne, C. J. (1983). Molluscan immunobiology. In: “The Mollusca,” (A. S. M. Sallendia and K. M. Wilbur, eds.), Physiology, Part II, pp. 407–485. Academic Press, New York.CrossRefGoogle Scholar
  10. Bernheimer, A. W. (1952). Hemagglutinins in caterpillar blood. Science, 155, 150–151.CrossRefGoogle Scholar
  11. Bernheimer, A. W., Caspari, E., and Kaiser, A. P. (1952). Studies on antibody formation in caterpillars. J. Exp. Zool., 119, 23–35.CrossRefGoogle Scholar
  12. Brahmi, Z., and Cooper, E. L. (1974). Characteristics of the agglutinin in the scorpion, Androctonus australis. Contemp. Top. Immunobiol., 4, 261–270.CrossRefGoogle Scholar
  13. Brennan, B. M., and Cheng, T. C. (1975). Resistance of Moniliformis dubius to the defense reactions of the American cockroach, Periplaneta americana. J. Invertebr. Pathol., 26, 65–73.PubMedCrossRefGoogle Scholar
  14. Briggs, J. D. (1958). Humoral immunity in lepidopterous larvae. J. Exp. Zool., 138, 155–188.PubMedCrossRefGoogle Scholar
  15. Burnet, F. M. (1974). Invertebrate precursors to immune responses. Contemp. Top. Immunobiol., 4, 13–24.CrossRefGoogle Scholar
  16. Coombe, D. R., Ey, P. L., and Jenkin, C. R. (1982). Hemagglutinin levels in hemolymph from the colonial ascidian Botrylloides leachii following injection with sheep or chicken erythrocytes. Aust. J. Exp. Biol. Med. Sci., 60, 359–368.PubMedCrossRefGoogle Scholar
  17. Cooper, E. L., and Lemmi, C. A. E. (1981). Invertebrate humoral immunity. Dev. Comp. Immunol., 5, Suppl. 1, 3–21.CrossRefGoogle Scholar
  18. Donlon, W. C., and Wemyss, C. T. (1976). Analysis of the hemagglu-tinin and general protein element of the hemolymph of the West Indian leaf cockroach, Blaberus craniifer. J. Invertebr. Pathol., 28, 191–194.CrossRefGoogle Scholar
  19. Ey, P. L., and Jenkin, C. R. (1982). Molecular Basis of Self/Non-Self Discrimination in the Invertebrata. In: “The Reticuloen-dothelial System: A Comprehensive Treatise,” (N. Cohen and M. M. Sigel, eds.), vol. 3, pp. 321–391. Plenum, New York.Google Scholar
  20. Feir, D., and Watz, M. A. (1964). An agglutinating factor in insect hemolymph. Ann. Ent. Soc. Amer., 57, 388.Google Scholar
  21. Fuke, M. T., and Sugai, T. (1972). Studies on the naturally occurring hemagglutinin in the coelomic fluid of an ascidian. Biol. Bull., 143, 140–149.CrossRefGoogle Scholar
  22. Gilliam, M., and Jeter, W. S. (1970). Synthesis of agglutinating substances in adult honeybees against Bacillus larvae. J. Invertebr. Pathol., 16, 69–70.PubMedCrossRefGoogle Scholar
  23. Hardy, S. W., Fletcher, T. C., and Olafsen, J. A. (1977). Aspects of cellular and humoral defense mechanisms in the Pacific oyster, Crassostrea gigas. In: “Developmental Immunobiology,” (J. B. Solomon and J. D. Horton, eds.), pp. 59–66. Elsevier /North-Holland, Amsterdam.Google Scholar
  24. Hapner, K. D., and Jermyn, M. A. (1981). Haemagglutinin activity in the haemolymph of Teleogryllus commodus (Walker). Insect Biochem., 11, 287–295.CrossRefGoogle Scholar
  25. Hobart, M. J., and McConnell, I. (1975). “The Immune System, a Course on the Molecular and Cellular Basis of Immunity”. Blackwell, Oxford.Google Scholar
  26. Jenkin, C. R. (1976). Factors involved in the recognition of foreign material by phagocytic cells from invertebrates. In: “Comparative Immunology,” (J. J. Marchalonis, ed.), pp. 80–97. Blackwell, Oxford.Google Scholar
  27. Jenkin, C. R., and Hardy, D. (1975). Recognition factors of the crayfish and the generation of diversity. Adv. Exp. Med. Biol., 64, 55–56.PubMedGoogle Scholar
  28. Marchalonis, J. J., and Edelman, G. M. (1968). Isolation and characterization of a hemagglutinin from Limulus polyphemus. J. Mol. Biol., 32, 453–465.CrossRefGoogle Scholar
  29. McKay, D., and Jenkin, C. R. (1970a). Immunity in the invertebrates. The fate and distribution of bacteria in normal and immunized crayfish (Parachaeraps bicarinatus). Aust. J. Exp. Biol. Med. Sci., 48, 599–607.PubMedCrossRefGoogle Scholar
  30. McKay, D., and Jenkin, C. R. (1970c). Immunity in the invertebrates. Correlation of the phagocytic activity of haemocytes with resistance to infection in the crayfish (Parachaeraps bicarinatus). Aust. J. Exp. Biol. Med. Sci., 48, 609–617.PubMedCrossRefGoogle Scholar
  31. McKay, D., Jenkin, C. R., and Rowley, D. (1969). Immunity in the invertebrates. I. Studies on the naturally occurring haemag-glutinins in the fluid from invertebrates. Aust. J. Exp. Biol. Med. Sci., 47, 125–134.PubMedCrossRefGoogle Scholar
  32. Miler, I. (1973). The role of non-specific opsonins in the in vivoand in vitrouptake of E. coli by RE cells of newborn germ-free piglets. In: “Non-Specific Factors Influencing Host Resistance,” (W. Braun and J. Ungar, eds.), pp. 111–128. Karger, Basel.Google Scholar
  33. Paterson, W. D., and Stewart, J. E. (1974). In vitro phagocytosis by hemocytes of the American lobster (Homarus americanus). J. Fish. Res. Bd. Canad., 31, 1051–1056.CrossRefGoogle Scholar
  34. Pauley, G. B. (1973). An attempt to immunize the blue crab, Cal-linectes sapidus, with vertebrate red blood cells. Experimentia, 29, 210–211.CrossRefGoogle Scholar
  35. Pauley, G. B. (1974). Comparison of a natural agglutinin in the hemolymph of the blue crab, Callinectes sapidus, with aggluti-nins of other invertebrates. Contemp. Top. Immunobiol., 4, 241–260.CrossRefGoogle Scholar
  36. Pauley, G. B., Krassner, S. M., and Chapman, F. A. (1971). Bacterial clearance in the California sea hare, Aplysia californica. J. Invertebr. Pathol., 18, 227–239.PubMedCrossRefGoogle Scholar
  37. Prokop, I., Uhlenbruck, G., and Kohler, W. (1968). A new source of antibody-like substance having anti-blood groups specificity. Vox Sang., 14, 321–333.PubMedCrossRefGoogle Scholar
  38. Prowse, R. H., and Tait, N. N. (1969). In vitro phagocytosis by amoebocytes from the haemolymph of Helix aspersa (Müller). I. Evidence for opsonic factor(s) in serum. Immunology, 17, 437–443.PubMedGoogle Scholar
  39. Rabinovitch, M., and De Stefano, M. (1970). Interactions of red cells with phagocytes of the wax-moth (Galleria mellonella) and mouse. Exp. Cell. Res., 59, 272–282.PubMedCrossRefGoogle Scholar
  40. Ratcliffe, N. A., and Rowley, A. F. (1983). Recognition factors in insect hemolymph. Dev. Comp. Immunol. Suppl. 3, (in press).Google Scholar
  41. Ratcliffe, N. A., Gagen, S. J., Rowley, A. F., and Schmit, A. R. (1976). Studies on insect cellular mechanisms and aspects of the recognition of foreignness. In: “Proc. 1st Int. Coll. Invertebr. Pathol.,” (T. A. Angus, P. Faulkner, and A. Rosenfield, eds.), pp. 312–313. Queens University Press, Kingston, Ontario.Google Scholar
  42. Renwrantz, L. R., and Mohr, W. (1978). Opsonizing effect of serum and albumin gland extracts on the elimination of human erythro-cytes from the circulation of Helix pomatia. J. Invertebr. Pathol., 31, 164–170.PubMedCrossRefGoogle Scholar
  43. Renwrantz, L. R., and Stahmer, A. (1983). Opsonizing properties of an isolated hemolymph agglutinin and demonstration of lectin-like recognition molecules at the surface of hemocytes from Mytilus edulis. J. Comp. Physiol., 149, 535–546.Google Scholar
  44. Rowley, A. F., and Ratcliffe, N. A. (1980). Insect erythrocyte agglutinins. In vitro opsonization experiments with Climumus extradentatusand Periplaneta americana hemocytes. Immunology, 40, 483–492.PubMedGoogle Scholar
  45. Scott, M. T. (1970). A naturally occurring hemagglutinin in the hemolymph of the American cockroach. Arch. Zool. Exp. Gen., 112, 73–80.Google Scholar
  46. Scott, M. T. (1971). Recognition of foreignness in invertebrates. II. In vitro studies of cockroach phagocytic haemocytes. Immunology, 21, 817–828.PubMedGoogle Scholar
  47. Sminia, T., van der Knapp, W. P. W., and Edelenbosch, P. (1979). The role of serum factors in phagocytosis of foreign particles by blood cells of the freshwater snail Lymnaea stagnalis. Dev. Comp. Immunol., 3, 37–44.PubMedCrossRefGoogle Scholar
  48. Smith, V. J., and Ratcliffe, N. A. (1978). Host defense reactions of the shore crab, Carcinus maenas (L.), in vitro. J. Mar. Biol. Ass. U.K., 58, 367–379.CrossRefGoogle Scholar
  49. Smith, V. J., and Söderhäll, K. (1983). α-1, 3 glucan activation of crustacean hemocytes in vitro and in vivo. Biol. Bull., 164, 299–314.CrossRefGoogle Scholar
  50. Stein, E., and Cooper, E. L. (1981). The role of opsonins in phagocytosis by coelomocytes of the earthworm, Lumbricus ter-restris. Dev. Comp. Immunol., 5, 415–425.PubMedGoogle Scholar
  51. Stossel, T. P. (1975). Phagocytosis: recognition and ingestion. Semin. Hematol., 12, 83–116.PubMedGoogle Scholar
  52. Stuart, A. E. (1968). The reticulo-endothelial apparatus of the lesser octopus, Eledone cirrosa. J. Pathol. Bacteriol., 96, 401–412.PubMedCrossRefGoogle Scholar
  53. Tripp, M. R. (1966). Hemagglutinin in the blood of the oyster, Crassostrea virginica. J. Invertebr. Pathol., 8, 478–484.PubMedCrossRefGoogle Scholar
  54. Tyson, C. J., and Jenkin, C. R. (1973). The importance of opsonic factors in the removal of bacteria from the circulation of the crayfish (Parachaeraps bicarinatus). Aust. J. Exp. Biol. Med. Sci., 51, 609–615.PubMedCrossRefGoogle Scholar
  55. Tyson, C. J., and Jenkin, C. R. (1974). Phagocytosis of bacteria in vitroby haemocytes from the crayfish (Parachaeraps bicarinatus). Aust. J. Exp. Biol. Med. Sci., 52, 341–348.PubMedCrossRefGoogle Scholar
  56. Uhlenbruch, G., and Prokop, O. (1966). An agglutinin from Helix pomatia which reacts with terminal N-acetyl-D-galactosamine. Vox Sanguinis, 11, 519–520.CrossRefGoogle Scholar
  57. Weir, D. M., and Ögmundsdóttir, H. M. (1977). Non-specific recognition mechanisms by mononuclear phagocytes. Clin. Exp. Immunol., 30, 323–329.PubMedGoogle Scholar
  58. Whitcomb, R. F., Shapiro, M., and Granados, R. R. (1974). Insect defense mechanisms against microorganisms and parasitoids. In: “The Physiology of Insecta,” (M. Rockstein, ed.), vol. 5, 447–536. Academic Press, New York.CrossRefGoogle Scholar
  59. Williams, C. B. (1960). The range and pattern of insect abundance. Amer. Nat., 94, 137–151.CrossRefGoogle Scholar
  60. Wojdami, A., Stein, E. A., Lemmi, C. A., and Cooper, E. L. (1982). Agglutinins and proteins in the earthworm, Lumbricus terres-tris, before and after injection of erythrocytes, carbohydrates and other materials. Dev. Comp. Immunol., 6, 613–624.Google Scholar
  61. Yeaton, R. W. (1980). Lectins of the North American silkmoth (Hyalophora: Cecropia): Their Molecular Characterization and Developmental Biology. Ph.D. dissertation, University of Philadelphia, Pa.Google Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Norman A. Ratcliffe
    • 1
  • Andrew F. Rowley
    • 1
  1. 1.Department of ZoologyUniversity College of SwanseaSwanseaWales, UK

Personalised recommendations