In Vitro Phagocytosis by Molluscan Hemocytes: A Survey and Critique of Methods

  • Richard A. Robohm
Part of the Comparative Pathobiology book series (CPATH, volume 6)


Endocytosis is a widespread cellular function in which vesicles and vacuoles formed by the plasma membrane regulate the uptake of molecules in a cell’s environment. Most eucaryotic cells have this function; however, among mammalian cells, in which it has been mostly thoroughly studied, it is most prominent in leucocytes, ma-crophages, capillary endothelial cells, thyroid epithelial cells, yolk sac cells, and oocytes (Silverstein et al., 1977). Endocytic activity is usually divided into two categories. Phagocytosis, or “eating”, is used to describe the uptake of large particles. This uptake occurs by close apposition of a segment of the plasma membrane to the particle’s surface, while excluding most, if not all, of the surrounding fluid (Silverstein et al., 1977). Particle size has been described as having the range of 0.01 μm to 10 μm and may include microorganisms (from viruses to bacteria and fungi), as well as inert particles (Cohn, 1972). The term pinocytosis, or “drinking”, is used to describe vesicular uptake of everything else. This may include small particles (such as lipoproteins, ferritin, colloids, and immune complexes), soluble macromolecules (e.g., enzymes, hormones, antibodies, yolk proteins, and toxins), and low molecular weight solutes. It is assumed that uptake of extracellular fluid is always included in pinocytosis (Silverstein et al., 1977). Since little information exists on in vitro pinocytosis in molluscan hemocytes, aside from the work of Feng (1965), this discussion will focus on that part of the endocytic process termed phagocytosis for which more information is available.


Pacific Oyster Sheep Erythrocyte Helix Pomatia Particle Uptake Thyroid Epithelial Cell 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acton, R. T., Bennett, J. C., Evans, E. E., and Schohenloher, R. E. (1979a). Physical and chemical characterization of an oyster hemagglutinin. J. Biol. Chem., 244, 4128–4135.Google Scholar
  2. Acton, R. T., Evans, E. E., and Bennett, J. C. (1969b). Immunolo-gical capabilities of the oyster Crassostrea virginica. Comp. Biochem. Physiol., 29, 149–160.CrossRefPubMedGoogle Scholar
  3. Anderson, R. S., and Good, R. A. (1976). Opsonic involvement in phagocytosis by mollusk hemocytes. J. Invertebr. Pathol., 27, 52–64.CrossRefGoogle Scholar
  4. Arimoto, R., and Tripp, M. R. (1977). Characterization of a bacterial agglutinin in the hemolymph of the hard clam, Merceneria mercenaria. J. Invertebr. Pathol., 30, 406–413.CrossRefGoogle Scholar
  5. Bang, F. B. (1961). Reaction to injury in the oyster (Crassostrea v.irginica). Biol. Bull., 12, 57–68.CrossRefGoogle Scholar
  6. Capo, C., Bongrand, P., Benoliel, A., and Depieds, R. (1979). Nonspecific recognition in phagocytosis: ingestion of aldehyde-treated erythrocytes by rat peritoneal macrophages. Immunology, 36, 501–508.PubMedGoogle Scholar
  7. Cheng, T. C., and Rodrick, G. E. (1975). Lysosoraal and other enzymes in the hemolymph of Crassostrea virginica and Merce-naria mercenaria. Comp. Biochem. Physiol., 52B, 443–447.Google Scholar
  8. Cheng, T. C, Rodrick, G. E., Foley, D. A., and Koehler, S. A. (1975). Release of lysozome from hemolymph cells of Mercenaria mercenaria during phagocytosis. J. Invertebr. Pathol., 25, 261–265.CrossRefPubMedGoogle Scholar
  9. Cohn, Z. A. (1963). The fate of bacteria within phagocytic cells. I. The degradation of isotopically labelled bacteria by poly-morphonuclear leucocytes and macrophages. J. Exp. Med., 117, 27–42.CrossRefPubMedGoogle Scholar
  10. Cohn, Z. A. (1972). Properties of macrophages. In: “Phagocytic Mechanisms in Health and Disease,” (R. C. Williams, Jr., and H. H. Fudenberg, eds.), pp. 39–49. Intercontinental Medical Book Corp., New York.Google Scholar
  11. Cunningham, R. K., Söderström, T. O., Gillman, C. F., and van Oss, C. J. (1975). Phagocytosis as a surface phenomenon. V. Contact angles and phagocytosis of rough and smooth strains of Salmonella typhimurium and the influence of specific antiserum. Immunol. Commun., 4, 429–442.PubMedGoogle Scholar
  12. Deman, J. J., Vakaet, L. C., and Bruyneel, E. A. (1976). Cell size and mutual cell adhesion. II. Evidence for a relation between cell size, long-range electrostatic repulsion and intercellular adhesiveness during density-regulated growth in suspension. J. Membr. Biol., 26, 205–215.CrossRefPubMedGoogle Scholar
  13. Faulk, W. P., H. K., Jeong, K. H., Heyneman, D., and Price, D. (1973). An approach to the study of immunity in invertebrates. In: “‘Non-Specific’ Factors Influencing Host Resistance,” (W. Braun and J. Ungar, eds.), pp. 24–32. Karger, Basel.Google Scholar
  14. Feng, S. Y. (1965). Pinocytosis of proteins by oyster leucocytes. Biol. Bull., 129, 95–105.CrossRefGoogle Scholar
  15. Foley, D. A., and Cheng, T. C. (1975). A quantitative study of phagocytosis by hemolymph cells of the pelecypods Crassostrea virginica and Mercenaria mercenaria. J. Invertebr. Pathol., 25, 189–197.CrossRefPubMedGoogle Scholar
  16. Foley, D. A., and Cheng, T. C. (1977). Degranulation and other changes of molluscan granulocytes associated with phagocytosis. J. Invertebr. Pathol., 29, 321–325.CrossRefPubMedGoogle Scholar
  17. Folger, R., Weiss, L., Glaves, D., Subjeck, J. R., and Harlos, J. P. (1978). Translational movements of macrophages through media of different viscosities. J. Cell. Sci., 31, 245–257.PubMedGoogle Scholar
  18. Freimer, N. B., Ögmundsdóttir, H. M., Blackwell, C. C, Sutherland, I. W., Graham, L., and Weir, D. M. (1978). The role of cell wall carbohydrates in binding of microorganisms to mouse peritoneal exudate macrophages. Acta Pathol. Microbiol. Scand., Sect. B, 86, 53–57.Google Scholar
  19. Fries, C. R., and Tripp, M. R. (1970). Uptake of viral particles by oyster leukocytes in vitro. J. Invertebr. Pathol., 15, 136–137.CrossRefPubMedGoogle Scholar
  20. Gigli, I., and Nelson, R. A., Jr. (1968). Complement dependent immune phagocytosis. I. Requirements for C′l, C′4, C′2, C′3. Exp. Cell. Res., 51, 45–67.CrossRefPubMedGoogle Scholar
  21. Goldstein, J. L., and Brown, M. S. (1974). Binding and degradation of low density lipoproteins by cultured human fibroblasts. J. Biol. Chem., 249, 5153–5162.PubMedGoogle Scholar
  22. Goren, M. B. (1977). Phagocyte lysosomes: interactions with infectious agents, phagosomes, and experimental perturbations in function. Ann. Rev. Microbiol., 31, 507–533.CrossRefGoogle Scholar
  23. Griffin, F. M., Jr., Griffin, J. A., and Silverstein, S. C. (1976). Studies on the mechanism of phagocytosis. II. The interaction of macrophages with antiimmunoglobulin IgG-coated bone marrow-derived lymphocytes. J. Exp. Med., 144, 788–809.CrossRefPubMedGoogle Scholar
  24. Griffin, F. M., Jr., Griffin, J. A., Leider, J. E., and Silverstein, S. C. (1975). Studies on the mechanism of phagocytosis. I. Requirements for circumferential attachment of particle-bound ligands to specific receptors on the macrophage plasma membrane. J. Exp. Med., 142, 1263–1282.CrossRefPubMedGoogle Scholar
  25. Hammarström, S., and Kabat, E. A. (1969). Purification and characterization of a blood-group reactive hemagglutinin from the snail Helix pomatiaand a study of the comgining site. Biochemistry, 8, 2696–2705.CrossRefPubMedGoogle Scholar
  26. Hardy, S. W., Grant, P. T., and Fletcher, T. C. (1977). A hemagglu-tinin in the tissue fluid of the Pacific oyster, Crassostrea gigas, with specificity for sialic acid residues in glycopro-teins. Experientia, 33, 767–769.CrossRefPubMedGoogle Scholar
  27. Heard, D. H., and Seaman, G. V. F. (1961). The action of lower aldehydes on the human erythrocyte. Biochim. Biophys. Acta, 53, 366–374.CrossRefPubMedGoogle Scholar
  28. Inchley, C., Grey, H. M., and Uhr, J. W. (1970). The cytophilic activity of human immunoglobulins. J. Immunol., 105, 362–369.PubMedGoogle Scholar
  29. Jones, T. C. (1975). Attachment and ingestion phases of phagocytosis. In: “Mononuclear Phagocytes in Immunity, Infection and Pathology,” (R. van Furth, ed.), pp. 269–282. Blackwell, London.Google Scholar
  30. Kaplan, G. (1977). Differences in the mode of phagocytosis with Fc and C3 receptors in macrophages. Scand. J. Immuno., 6, 797–807.CrossRefGoogle Scholar
  31. Kaplan, G., Gaudernack, G., and Seljelid, R. (1975). Localization of receptors and early events of phagocytosis in the macro-phage. Exp. Cell Res., 95, 365–375.CrossRefPubMedGoogle Scholar
  32. Lehrer, R. I., and Cline, M. J. (1969). Interaction of Candida albicans with human leukocytes and serum. J. Bacteriol., 98, 996–1004.PubMedGoogle Scholar
  33. McDade, J. E., and Tripp, M. R. (1967). Mechanism of agglutination of red blood cells by oyster hemolymph. J. Invertebr. Pathol., 9, 523–530.CrossRefPubMedGoogle Scholar
  34. Michell, R. H., Pancake, S. J., Noseworthy, J., and Karnovsky, M. L. (1969). Measurements of rates of phagocytosis. The use of cellular monlayers. J. Cell. Biol., 40, 216–224.CrossRefPubMedGoogle Scholar
  35. Michl, J., and Silverstein, S. C. (1976). Receptors promoting complement mediated phagocytosis behave independently of structure mediating non-specific phagocytosis within a single segment of macrophage plasma membrane. J. Cell. Biol., 70, 286a.Google Scholar
  36. Morita, T., and Perkins, E. H. (1965). A simple quantitative method to assess the in vitro engulfing and degradation potentials of mouse peritoneal phagocytic cells. J. Reticuloendothel. Soc, 2, 406–419.PubMedGoogle Scholar
  37. North, R. J. (1966). The localization by electron microscopy of acid phosphatase activity in guinea pig macrophages. J. Ultra-struct. Res., 16, 96–108.CrossRefGoogle Scholar
  38. Novikoff, A. B. (1976). The endoplasmic reticulum: a cytochemist’s view (a review). Proc. Natl. Acad. Sci. USA, 73, 2781–2787.CrossRefPubMedGoogle Scholar
  39. Ögmundsdóttir, H. M., and Weir, D. M. (1976). The characteristics of binding of Corynebacterium parvumto glass adherent mouse peritoneal exudate cells. Clin. Exp. Immunol., 26, 334–340.PubMedGoogle Scholar
  40. Pauley, G. B., Krassner, S. M., and Chapman, F. A. (1971a). Bacterial clearance in the California sea hare, Aplysia califor-nica. J. Invertebr. Pathol., 18, 227–239.CrossRefPubMedGoogle Scholar
  41. Pauley, G. B., Granger, G. A., and Krassner, S. M. (1971b). Characterization of a natural agglutinin present in the hemolymph of the California sea hare, Aplysia californica. J. Invertebr. Pathol., 18, 207–218.CrossRefPubMedGoogle Scholar
  42. Pemberton, R. T. (1974). Anti-A and anti-B of gastropod origin. Ann. N. Y. Acad. Sci., 234, 95–121.CrossRefPubMedGoogle Scholar
  43. Prowse, R. H., and Tait, N. N. (1969). In vitro phagocytosis by amoebocytes from the maemolymph of Helix aspersa (Müller). I. Evidence for opsonic factor in serum. Immunology, 17, 437–443.PubMedGoogle Scholar
  44. Rabinovitch, M. (1967). The dissociation of the attachment and ingestion phages of phagocytosis by macrophages. Exp. Cell. Res., 46, 19–28.CrossRefPubMedGoogle Scholar
  45. Renwrantz, L. R., and Cheng, T. C. (1977). Identification of agglutinin receptors on hemocytes of Helix pomatia. J. Invertebr. Pathol., 29, 88–96.CrossRefPubMedGoogle Scholar
  46. Roberts, R. B. (1967). The interaction in vitro between group B meningococci and rabbit polymorphonuclear leukocytes. Demonstration of type specific opsonins and bactericidins. J. Exp. Med., 126, 795–818.CrossRefPubMedGoogle Scholar
  47. Roberts, J., and Quastel, J. H. (1963). Particle uptake by polymorphonuclear leucocytes and Ehrlich ascites-carcinoma cells. Biochem. J., 89, 150–156.PubMedGoogle Scholar
  48. Root, R. K., Rosenthal, A. S., and Balestra, D. J. (1972). Abnormal bactericidal, metabolic, and lysosomal functions of Chediak-Higashi syndrome leukocytes. J. Clin. Invest., 51, 649–665.CrossRefPubMedGoogle Scholar
  49. Sastry, P. S., and Hokin, L. E. (1966). Studies on the role of phospholipids in phagocytosis. J. Biol. Chem., 241, 3354–3361.PubMedGoogle Scholar
  50. Silverstein, S. C., Christman, J. K., and Acs., G. (1976). The reovirus replicative cycle. Ann. Rev. Biochem., 45, 375–408.CrossRefGoogle Scholar
  51. Silverstein, S. C, Steinman, R. M., and Cohn, Z. A. (1977). Endo-cytosis. Ann. Rev. Biochem., 46, 669–722.CrossRefPubMedGoogle Scholar
  52. Smith, H. (1977). Microbial surfaces in relation to pathogenicity. Bacteriol. Rev., 41, 475–500.PubMedGoogle Scholar
  53. Stendahl, O., and Edebo, L. (1972). Phagocytosis of mutants of Salmonella typhimuriumby rabbit polymorphonuclear cells. Acta Pathol. Microbiol. Scand., Sect. B, 80, 481–488.Google Scholar
  54. Stendahl, O., Tagesson, C., and Edebo, M. (1973). Partition of Salmonella typhimurium in a two-polymer aqueous phase system in relation to liability to phagocytosis. Infect. Immun., 8, 36–41.PubMedGoogle Scholar
  55. Stossel, T. P. (1975). Phagocytosis: recognition and ingestion. Semin. Hematol., 12, 83–116.PubMedGoogle Scholar
  56. Stossel, T. P., and Cohn, Z. A. (1976). Phagocytosis. In: “Methods in Immunology and Immunochemistry,” (C. A. Williams and M. W. Chase, eds.), pp. 261–301. Academic Press, New York.Google Scholar
  57. Stossel, T. P., Mason, R. J., Hartwig, J., and Vaughan, M. (1972). Quantitative studies of phagocytosis by polymorphonuclear leukocytes: use of emulsions to measure the initial rate of phagocytosis. J. Clin. Invest., 51, 615–624.CrossRefPubMedGoogle Scholar
  58. Stuart, A. E. (1968). The reticulo-endothelial apparatus of the lesser octopus, Eledone cirrosa. J. Pathol. Bacteriol., 96, 401–412.CrossRefPubMedGoogle Scholar
  59. Thrasher, S. G., Yoshida, T., van Oss, C. J., Cohen, S., and Rose, N. R. (1973). Alteration of macrophage interfacial tension by supernatants of antigen-activated lymphocyte culture. J. Immunol., 110, 321–326.PubMedGoogle Scholar
  60. Tripp, M. R. (1966). Hemagglutinin in the blood of the oyster Crassostrea virginica. J. Invertebr. Pathol., 8, 478–484.CrossRefPubMedGoogle Scholar
  61. Tripp, M. R., and Kent, V. E. (1968). Studies on oyster cellular immunity. In vitro, 3, 129–135.CrossRefGoogle Scholar
  62. Tullis, J. L. (1953). Preservation of leukocytes. Blood, 8, 563–575.PubMedGoogle Scholar
  63. Uhr, J. (1965). Passive sensitization of lymphocytes and macro-phages by antigen-antibody complexes. Proc. Natl. Acad. Sci. USA, 54, 1599–1606.CrossRefPubMedGoogle Scholar
  64. van der Meer, J. W. M., Bulterman, D., van Zwet, T. L., Elzenga-Classen, I., and van Furth, R. (1978). Culture of mononuclear phagocytes on a teflon surface to prevent adherence. J. Exp. Med., 147, 271–276.CrossRefPubMedGoogle Scholar
  65. van Furth, R., van Zwet, T. L., and Leijh, P. C. J. (1978). In vitrodetermination of phagocytosis and intracellular killing by polymorhponuclear and mononuclear phagocytes. In: “Handbook of Experimental Immunology,” third edition, (D. M. Weir, ed.), Sect. 32.2-33.14. Blackwell, Oxford.Google Scholar
  66. van Oss, C. J. (1978). Phagocytosis as a surface phenomenon. Ann. Rev. Microbiol., 32, 19–39.CrossRefGoogle Scholar
  67. van Oss, C. J., and Gillman, C. F. (1972). Phagocytosis as a surface phenomenon. II. Contact angles and phagocytosis of encapsulated bacteria before and after opsonization by specific antiserum and complement. J. Reticuloendothel. Soc., 12, 497–502.PubMedGoogle Scholar
  68. Weir, D. M., and Ögmundsdóttir, H. M. (1977). Non-specific recognition mechanisms by mononuclear phagocytes. Clin. Exp. Immunol., 30, 323–329.PubMedGoogle Scholar
  69. Wilkinson, P. C. (1976). Recognition and response in mononuclear and granular phagocytes. A Review. Clin. Exp. Immunol., 25, 355–366.PubMedGoogle Scholar
  70. Wright, A. E., and Douglas, S. R. (1903). An experimental investigation of the role of blood fluids in connection with phagocytosis. Proc. Roy. Soc. Lond. B. Biol. Sci., 72, 357–362.CrossRefGoogle Scholar
  71. Zuckerman, S. H., and Douglas, S. D. (1979). Dynamics of the macrophage plasma membrane. Ann. Rev. Microbiol., 33, 267–307.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Richard A. Robohm
    • 1
  1. 1.Northeast Fisheries Center, Milford LaboratoryNational Oceanic and Atmospheric Administration, National Marine Fisheries ServiceMilfordUSA

Personalised recommendations