A Classification of Molluscan Hemocytes Based on Functional Evidences

  • Thomas C. Cheng
Part of the Comparative Pathobiology book series (CPATH, volume 6)


Molluscan hemocytes serve a variety of functions. It is known that these cells are involved in wound repair (Pauley and Sparks, 1965; des Voignes and Sparks, 1968; Pauley and Heaton, 1969; Ruddell, 1971b), shell repair (Wagge, 1951, 1955), nutrient digestion and transport (Yonge, 1923, 1926; Takatsuki, 1934a; Yonge and Nicholas, 1940; Zacks and Welsh, 1953; Wagge, 1955; Zacks, 1955; Owen, 1966; Purchon, 1968; Cheng and Cali, 1974; Cheng and Rudo, 1976; Cheng, 1977), excretion (Durham, 1892; Canegallo, 1924; Orton, 1923), and internal defense, i.e., cellular immunity (Stauber, 1950, 1961; Tripp, 1958a; b, 1960; Feng, 1959, 1965; and critical reviews by Cheng, 1967; Cheng and Rifkin, 1970; Cheng, 1979).


Mytilus Edulis Hippuric Acid Pacific Oyster Cytoplasmic Granule Crassostrea Virginica 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abolinš-Krogis, A. (1968). Shell regeneration in Helix pomatiawith special reference to the elementary calcifying particles. In: “Studies in the Structure, Physiology and Ecology of Molluscs,” (V. Fretter, ed.). Academic Press, London and New York.Google Scholar
  2. Bang, F. B. (1961). Reaction to injury in the oyster (Crassostrea virginica). Biol. Bull., 161, 57–68.CrossRefGoogle Scholar
  3. Beedham, G. E. (1965). The mantle and the shell of Solemya parkin-soni (Protobranchia: Bivalvia). J. Zool., 145, 107–124.Google Scholar
  4. Buchner, P. (1965). “Endosymbiosis of Animals with Plant Microorganisms.” Interscience, New York.Google Scholar
  5. Campbell, S. A. (1970). The carotenoid pigments of Mytilus edulisand Mytilus californianus. Comp. Biochem. Physiol., 32, 92–115.Google Scholar
  6. Canegallo, M. A. (1924). I. leucociti, l’intestino e le branchie nell’ alimentazione delle Unio. Riv. Biol., 6, 614–634.Google Scholar
  7. Cheney, D. P. (1969). “The Morphology, Morphogenesis and Reactive Responses of 3H-thymidine Labeled Leucocytes in the Manila clam, Tapes semidecussata (Reeve).” Ph.D. Thesis, University Washington, Seattle, Washington.Google Scholar
  8. Cheng, T. C. (1967). Marine molluscs as hosts for symbiosis: with a review of known parasites of commercially important species. Adv. Mar. Biol., 5, 1–424.CrossRefGoogle Scholar
  9. Cheng, T. C. (1975). Functional morphology and biochemistry of molluscan phagocytes. Ann. N.Y. Acad. Sci., 266, 343–379.PubMedCrossRefGoogle Scholar
  10. Cheng, T. C. (1976a). Beta-glucuronidase from the serum and cells of Mercenaria mercenaria and Crassostrea virginica (Mollusca: Pelecypoda). J. Invert. Pathol., 27, 125–128.CrossRefGoogle Scholar
  11. Cheng, T. C. (1976b). Humoral immunity in molluscs. Proc. IXth Intl. Colloq. Invert. Pathol., pp. 190–194. Queens University Press, Kingston, Ontario, Canada.Google Scholar
  12. Cheng, T. C. (1977). Biochemical and ultrastructural evidence for the double role of phagocytosis in molluscs: defense and nutrition. Comp. Pathobiol., 3, 21–30.Google Scholar
  13. Cheng, T. C. (1979). Cellular immunity in molluscs: with emphasis on the intermediate host of human-infecting schistosomes. Inst. Lab. Anim. Res. News, Natl. Acad. Sci., 22, 1–16.Google Scholar
  14. Cheng, T. C. (1980). Bivalves. In: “Invertebrate Blood Cells,” (N.A. Ratcliffe and A.F. Rowley, eds.), volume 1, pp. 233–300. Academic Press, London.Google Scholar
  15. Cheng, T. C. and Auld, K. R. (1977). Hemocytes of the pulmonate gastropod Biomphalaria glabrata. J. Invert. Pathol., 30, 119–122.CrossRefGoogle Scholar
  16. Cheng, T. C., and Burton, R. W. (1965). Relationships between Bucephalus sp. and Crassostrea virginica: histopathology and sites of infection. Chesapeake Sci., 6, 3–16.CrossRefGoogle Scholar
  17. Cheng, T. C, and Burton, R. W. (1966). Relationships between Bucephalus sp. and Crassostrea virginica: a histochemical study of some carbohydrates and carbohydrate complexes occurring in the host and parasite. Parasitology, 56, 111–122.PubMedCrossRefGoogle Scholar
  18. Cheng, T. C, and Cali, A. (1974). An electron microscope study of the fate of bacteria phagocytized by granulocytes of Crassostrea virginica. Contemp. Top. Immunobiol., 4 25–35.CrossRefGoogle Scholar
  19. Cheng, T. C, and Foley, D. A. (1975). Hemolymph cells of the bivalve mollusc Mercenaria mercenaria: an electron microscopical study. J. Invert. Pathol., 26, 341–351.CrossRefGoogle Scholar
  20. Cheng, T. C, and Galloway, P. C. (1970). Transplantation immunity in mollusks: the histoincompatibility of Helisoma duryi normalewith allografts and xenografts. J. Invert. Pathol., 15 177–192.CrossRefGoogle Scholar
  21. Cheng, T. C., and Guida, V. G. (1980). Behavior of Bulinus trunca-tus rohlfsi hemocytes (Gastropoda: Pulmonata). Trans. Am. Microsc. Soc., 99, 101–111.CrossRefGoogle Scholar
  22. Cheng, T. C., and Rifkin, E. (1970). Cellular reactions in marine molluscs in response to helminth parasitism. In: “Diseases of Fish and Shellfish,” pp. 443-496. Am. Fisher. Soc. Symp. Google Scholar
  23. Cheng, T. C, and Rodrick, G. E. (1974). Identification and characterization of lysozyme from the hemolymph of the soft-shelled clam Mya arenaria. Biol. Bull., 147, 311–320.PubMedCrossRefGoogle Scholar
  24. Cheng, T. C., and Rodrick, G. E. (1975). Lysosomal and other enzymes in the hemolymph of Crassostrea virginica. J. Invert. Pathol., 52B, 443–447.Google Scholar
  25. Cheng, T. C., and Rudo, B. M. (1976). Distribution of glycogen resulting from degradation of C-labelled bacteria in the American oyster, Crassostrea virginica. J. Invert. Pathol., 27, 259–262.CrossRefGoogle Scholar
  26. Cheng, T. C., Sanders, B. G. (1962). Internal defense mechanisms in molluscs and an electrophoretic analysis of a naturally occurring serum heraagglutinin in Viviparus malleatus. Reeve. Proc. Pa. Acad. Sci., 36, 72–83.Google Scholar
  27. Cheng, T. C., and Yoshino, T. P. (1976). Lipase activity in the serum and hemolymph cells of the soft-shelled clam, Mya arenar-ia, during phagocytosis. J. Invert. Pathol., 27, 243–245.CrossRefGoogle Scholar
  28. Cheng, T. C, Thakur, A. S., and Rifkin, E. (1970). Phagocytosis as an internal defense mechanism in the Mollusca: with an experimental study of the role of leucocytes in the removal of ink particles in Littorina scabra Linn. In: “Symposium on Mollusca,” pp. 546–563. Marine Biol. Assoc. India, Bangalore, India.Google Scholar
  29. Cheng, T. C., Rodrick, G. E., Foley, D. A., and Koehler, S. A. (1975). Release of lysozome from hemolymph cells of Mercenaria mercenaria during phagocytosis. J. Invert. Pathol., 25, 261–265.CrossRefGoogle Scholar
  30. Cheng, T. C., Huang, J. W., Karadogan, H., Renwrantz, L. R., and Yoshino, T. P. (1980). Separation of oyster hemocytes by density gradient centrifugation and identification of their surface receptors. J. Invert. Pathol., 36, 35–40.CrossRefGoogle Scholar
  31. Coupin, H. (1900). Sur les fonctions de la tige cristalline des Acephales. Compt. Rend. Acad. Sci., 130, 1214–1216.Google Scholar
  32. Cuénot, L. (1891). Etudes sur le sang et les glandes lymphatiques dans la serie animale (2e partie: Invertebres). Arch. Zool. Exper., 9, 19–54.Google Scholar
  33. Dakin, W. J. (1909). Pecten, the edible scallop. Liverpool Mar. Biol. Comm. Mem., 17, 1–144.Google Scholar
  34. DeBruyne, C. (1895). Recherches au sujet de l’intervention de la phagocytose dans le developpment des invertebrates. Arch. Biol., 14, 161–182.Google Scholar
  35. Des voigne, D. M., and Sparks, A. K. (1968). The process of wound healing in the Pacific oyster, Crassostrea gigas. J. Invert. Pathol., 12, 53–65.CrossRefGoogle Scholar
  36. Des Voigne, D. M., and Sparks, A. K. (1969). The reaction of the Pacific oyster, Crassostrea gigas, to homologous tissue implant. J. Invert. Pathol., 14, 293–300.CrossRefGoogle Scholar
  37. Drew, G. H. (1910). Some points in the physiology of lamellibranch blood corpuscles. Quart. J. Microsc. Sci., 54 605–623.Google Scholar
  38. Dunachie, J. F. (1963). The periostracum of “Mytilus edulis.” Trans. Roy. Soc. Edinb., 65, 383–411.CrossRefGoogle Scholar
  39. Dundee, D. S. (1953). Formed elements of the blood of certain fresh water mussels. Trans. Am. Microsc. Soc., 72, 254–264.CrossRefGoogle Scholar
  40. Durham, H. E. (1891). On wandering cells in echinoderms, etc., more especially with regard to excretory functions. Quart. J. Microsc. Sci., 33, 81–121.Google Scholar
  41. Durning, W. C. (1957). Repair of a defect in the shell of the snail Helix aspersa. J. Bone Joint. Surg., 39A, 377–393.Google Scholar
  42. Fabre, R., and Lederer, E. (1934). Animal lipochromes. Bull. Soc. Chim. Biol., 16, 105–118.Google Scholar
  43. Feng, S. Y. (1959). Defense mechanism of the oyster. Bull. N.J. Acad. Sci., 4, 17.Google Scholar
  44. Feng, S.Y. (1965). Pinocytosis of proteins by oyster leucocytes. Biol. Bull., 128, 95–105.CrossRefGoogle Scholar
  45. Feng, S.Y. (1966). Experimental bacterial infections in the oyster Crassostrea virginica. J. Invert. Pathol., 8, 505–511.CrossRefGoogle Scholar
  46. Feng, S.Y. (1967). Responses of molluscs to foreign bodies with special reference to the oyster. Fed. Proc., 26, 1685–1692.Google Scholar
  47. Feng, S.Y., and Stauber, L.A. (1968). Experimental hexamitiasis in the oyster Crassostrea virginica. J. Invert. Pathol., 10, 94–100.CrossRefGoogle Scholar
  48. Feng, S. Y., Feng., J. S., Burke, C. N., and Khairallah, L. H. (1971). Light and electron microscopy of the leucocytes of Crassostrea virginica (Mollusca: Pelecypoda). Z. Zellforsch., 120, 222–245.PubMedCrossRefGoogle Scholar
  49. Feng, S. Y., Feng, J. S., and Yamasu, T. (1977). Roles of Mytilus coruscus and Crassostrea gigas blood cells in defense and nutrition. Comp. Pathobiol., 3, 31–67.Google Scholar
  50. Fish, L. R., Kon, S. K., and Thompson, S. Y. (1956). Vitamin A and carotenoids in certain invertebrates, IV. Mollusca: Loricata, Lamellibranchiata, and Gastropoda. J. Mar. Biol. Assoc. U.K., 35, 41–61.CrossRefGoogle Scholar
  51. Foley, D. A., and Cheng, T. C. (1974). Morphology, hematologic parameters, and behavior of hemolymph cells of the quahaug clam, Mercenaria mercenaria. Biol. Bull., 146, 343–356.PubMedCrossRefGoogle Scholar
  52. Foley, D. A., and Cheng, T. C. (1975). A quantitative study of phagocytosis by hemolymph cell sof the pelecypods Crassostrea virginicaand Mercenaria mercenaria. J. Invert. Pathol., 25, 189–197.CrossRefGoogle Scholar
  53. Franssen, J., and Jeuniaux, C. (1963). Distribution de l’alginase chez les mollusques et d’autres invertebres. Arch. Intl. Physiol. Biochem., 71, 301–302.Google Scholar
  54. Galtsoff, P. S. (1964). The American oyster Crassostrea virginica. Gmelin. Fisher. Bull. Fish. Wildl. Serv., 64, 1–480.Google Scholar
  55. Geddes, P. (1880). On the coalescence of amoeboid cells into plasmo-dia on the so-called coagulation of invertebrate fluids. Proc. Roy. Soc. Lond., B, 30, 252–254.Google Scholar
  56. George, W. C. (1952). The digestion and adsorption of fat in lamellibranchs. Biol. Bull., 102, 118–127.CrossRefGoogle Scholar
  57. George, W. C, and Ferguson, J. H. (1950). The blood of gastropod mollusc. J. Morph., 86, 315–327.CrossRefGoogle Scholar
  58. Goetsch, W., and Scheuring, L. (1926). Parasitisumus and Symbiose der Algengattung Chorella. Zeit. Morph. Okol. Tiere., 7, 220–253.CrossRefGoogle Scholar
  59. Gomori, G. (1952). “Microscopic Histochemistry.” University Chicago Press, Chicago, Illinois.Google Scholar
  60. Goodrich, E. S. (1919). The pseudopodia of the leucocytes of invertebrates. Quart. J. Microsc. Sci., 64, 19–27.Google Scholar
  61. Graham, A. (1931a). On the morphology, feeding mechanism, and digestion of Ensis siliqua (Tchumacher). Trans. Roy. Soc. Edinburgh, 55, 725–751.CrossRefGoogle Scholar
  62. Graham, A. (1931b). On the optimum hydrogen ion concentration and temperature of the style enzyme Pecten maximus. Proc. Roy. Soc., B, 108, 84–95.CrossRefGoogle Scholar
  63. Grassé, P. P. (1960). “Traite de Zoologie,” volume 5. Masson, Paris.Google Scholar
  64. Haeckel, E. (1862). “Die Radiolarien.” George Reiner, Berlin.Google Scholar
  65. Haigler, S. A. (1964). “A Histochemical and Cytological Study of the ‘Brown Cells’ found in the ‘Auricular Pericardial Gland’ and other Tissues of the Oyster, Crassostrea virginica(Gmelin).” M.S. Thesis, University Delaware, Newark, Delaware.Google Scholar
  66. Harris, K. R. (1975). The fine structure of encapsulation in Biomphalaria glabrata. Ann. N.Y. Acad. Sci., 266, 446–464.PubMedCrossRefGoogle Scholar
  67. Hazleton, B. J., and Isenberg, G. R. (1977). Formed blood elements of the mussel Elliptio complanatum. Proc. Pa. Acad. Sci., 51, 54–56.Google Scholar
  68. Hozumi, M. (1959). On the lipolytic enzyme in the crystalline style of the clam Venerupis philippinarum. Adams et Reeve. Sci. Rep. Tokyo Kyoikn Daigaku, 9B, 37–55.Google Scholar
  69. Jeuniaux, C. (1963). “Chitine et Chitinolyse, un Chapitre de la Biologie Molecularie,” Masson, Paris.Google Scholar
  70. Jordon, H. E. (1952). “A Textbook of Histology.” Appelton-Century-Crofts, New York.Google Scholar
  71. Lederer, E. (1933). A new carotenioid found in the mollusk Pectun-culus glycymeris. L. Compt. Rend. Seanc. Soc. Biol., 113, 1015–1016.Google Scholar
  72. Letellier, A. (1891). La fonction urinaire s’exerce chez les mollusques acephales, par l’organe de Bojanus et par les glandes de Keber et de Grobben. Comp. Rend. Acad. Sci., 112, 56–58.Google Scholar
  73. Lie, K. J., Heyneman, D., and Yau, P. (1975). The origin of amebocytes in Biomphalaria glabrata. J. Parasitol., 63, 574–576.CrossRefGoogle Scholar
  74. Lillie, R. D. (1954). “Histopathologic Technic and Practical Histochemistry.” Blakiston, New York.Google Scholar
  75. Mackin, J. G. (1951). Histopathology of infection of Crassostrea virginica (Gmelin) by Dermocystidium marinumMackin, Owen and Collier. Bull. Mar. Sci. Gulf. Caribb., 1, 72–87.Google Scholar
  76. Manigault, P. (1939). Researches on the calcareous materials in mollusks; phosphatase and histochemical precipitation of calcium. Ann. Inst. Oceangr. Paris, n.s., 18 331–426.Google Scholar
  77. Martin, A. W., and Harrison, F. M. (1966). In: “Physiology of Mollusca,” (K. M. Wilbur and C. M. Yonge, eds.), volume II, pp. 353–386. Academic Press, New York.Google Scholar
  78. Michel, A. (1888). Sur la pretendue fusion des cellules lympha-tiques. Compt. Rend. Hebd. Seanc. Acad. Sci., 106, 1555–1558.Google Scholar
  79. Michelson, E. H. (1961). An acid-fast pathogen of fresh water snails. Am. J. Trop. Med. Hyg., 10, 423–427.PubMedGoogle Scholar
  80. Mix, M. C. (1976). A general model for leucocyte renewal in bivalve mollusks. Mar. Fisher. Rev., 38, 37–41.Google Scholar
  81. Mix, M. C, and Sparks, A. K. (1971). Repair of digestive tubule tissue of the Pacific oyster, Crassostrea gigas, damaged by ionizing radiation. J. Invert. Pathol., 17, 172–177.CrossRefGoogle Scholar
  82. Mix, M. C, and Tomasovic, S. P. (1973). The use of high specific activity tritiated thymidine and autoradiography for studying molluscan cells. J. Invert. Pathol., 21, 318–320.CrossRefGoogle Scholar
  83. Moore, C. A., and Eble, A. F. (1977). Cytochemical aspects of Mercenaria mercenaria hemocytes. Biol. Bull., 152, 105–119.PubMedCrossRefGoogle Scholar
  84. Moore, M. N., and Lowe, D. M. (1977). The cytology and cytochemistry of the hemocytes of Mytilus edulis and their responses to experimentally injected carbon particles. J. Invert. Pathol., 29, 18–30.CrossRefGoogle Scholar
  85. Müller, G. (1956). Morphologie, lebenslauf, und bildungsort der blutzellen von Lymnaea stagnalis. L. Z. Zellforsch., 44, 519–556.Google Scholar
  86. Nakahara, H., and Bevelander, G. (1969). An electron microscope study of ingestion of thorotrast by amoebocytes of Pinctada radiata. Texas Rep. Biol. Med., 27, 101–109.Google Scholar
  87. Narain, A. S. (1969). “Studies on the Heart and Blood of Lamellidens corrianus(Lea).” Ph.D. Thesis, University Gorakhpur, India.Google Scholar
  88. Narain, A. S. (1972a). Formed elements of the blood of fresh water mussel, Lamellidens corrianus. J. Morph., 137, 63–70.CrossRefGoogle Scholar
  89. Narain, A. S. (1972b). Blood chemistry of Lamellidens corrianus. Experientia, 28, 507.PubMedCrossRefGoogle Scholar
  90. Narain, A. S. (1973). The amoebocytes of lamellibranch molluscs, with special reference to the circulating amoebocytes. Malacol. Rev., 6, 1–12.Google Scholar
  91. Naville, A. (1926). Notes sur les eolidiens, Un eolidien d’eau saumatre. Origines des nematocystes, zooxanthelles et homochro-mie. Rev. Suisse Zool., 33, 251–289.Google Scholar
  92. Nelson, T. C. (1918). On the origin, nature and function of the crystalline style of lamellibranchs. J. Morph., 31, 53–111.CrossRefGoogle Scholar
  93. Nelson, T. C. (1925). Recent contributions to the knowledge of the crystalline style of lamellibranchs. Biol. Bull., 49, 86–99.CrossRefGoogle Scholar
  94. Newell, B. S. (1953). Cellulolytic activity in the lamellibranch crystalline style. J. Mar. Biol. Assoc., U.K., 32, 491–495.CrossRefGoogle Scholar
  95. Ohuye, T. (1937). On the coelomic corpuscles in the body fluid of some invertebrates. Sci. Rep. Tohoku Imp. Univ., Ser. 4, 12, 203–209.Google Scholar
  96. Ohuye, T. (1938a). On the coelomic corpuscles in the body fluid of some invertebrates. Sci. Rep. Tohoku Imp. Univ., Ser. 4, 12, 593–628.Google Scholar
  97. Orton, J. H. (1923). An account of investigations into the cause or causes of the unusual mortality among oysters in English oyster beds during 1920 and 1921, Part I. Report. G.B. Min. Agric., Fish. Invest., Ser. 2, 6, 3.Google Scholar
  98. Owen, G. (1966). Digestion. In: “Physiology of Mollusca,” (K. M. Wilbur and C. M. Yonge, eds.), volume II, pp. 53–96. Academic Press, New York.Google Scholar
  99. Pan, C. T. (1958). The general histology and topographic microana-tomy of Australorbis glabratus. Bull. Mus. Comp. Zool. Harvard, 119, 237–299.Google Scholar
  100. Pauley, G. B., and Heaton, L. H. (1969). Experimental wound repair in the number of circulating hemocytes in the California sea hare, Aplysia californica. J. Invert. Pathol., 13, 241–249.CrossRefGoogle Scholar
  101. Pauley, G. B., and Sparks, A. K. (1965). Preliminary observations on the acute inflammatory response in the Pacific oyster, Crassostrea gigas (Thurnberg). J. Invert. Pathol., 7, 248–256.CrossRefGoogle Scholar
  102. Pearse, A. G. E. (1961). “Histochemistry: Theoretical and Applied.” Little Brown, Boston, Mass.Google Scholar
  103. Prytherch, H. F. (1940). The life cycle and morphology of Nema-topsis ostrearum sp. nov., a gregarine parasite of the mud crab and oyster. J. Morph., 66, 39–64.CrossRefGoogle Scholar
  104. Purchon, R. D. (1941). On the biology and relationships of the lamellibranch Xylophaga dorsalis (Turton). J. Mar. Biol. Assoc. U.K., 25, 1–39.CrossRefGoogle Scholar
  105. Purchon, R. D. (1968). “The Biology of the Molluscs.” Pergamon, London.Google Scholar
  106. Renwrantz, L. R., Yoshino, T. P., Cheng, T. C., and Auld, K. R. (1979). Size determination of hemocytes from the American oyster, Crassostrea virginica, and the description of a phagocytosis mechanism. Zool. Jb. Physiol., 83, 1–12.Google Scholar
  107. Rifkin, E., Cheng, T. C, and Hohl, H. R. (1969). An electron microscope study of the constituents of encapsulating cysts in Crassostrea virginica formed in response to Tylocephalummeta-cestodes. J. Invert. Pathol., 14, 211–226.CrossRefGoogle Scholar
  108. Rodrick, G. E., and Cheng, T. C. (1974a). Activities of selected hemolymph enzymes in Biomphalaria glabrata (Mollusca). J. Invert. Pathol., 24, 374–375.CrossRefGoogle Scholar
  109. Rodrick, G. E., and Cheng, T. C. (1974a). Kinetic properties of lysozyme from Crassostrea virginica hemolymph. J. Invert. Pathol., 24, 41–48.CrossRefGoogle Scholar
  110. Rodrick, G. E., and Cheng, T. C. (1974b). Kinetic properties of lysozyme from Crassostrea virginicahemolymph. J. Invert. Pathol., 24, 41–48.CrossRefGoogle Scholar
  111. Ruddell, C. L. (1971a). The fine structure of the granular amoebo-cytes of the Pacific oyster, Crassostrea gigas. J. Invert. Pathol., 18, 269–275.CrossRefGoogle Scholar
  112. Ruddell, C. L. (1971b). The fine structure of oyster agranular amebocytes from regenerating mantle wounds in the Pacific oyster, Crassostrea gigas. J. Invert. Pathol., 18, 260–268.CrossRefGoogle Scholar
  113. Ruddell, C. L. (1971c). Elucidation of the nature and function of the granular oyster amebocytes through histochemical studies of normal and traumatized oyster tissues. Histochemie, 26,98–112.PubMedCrossRefGoogle Scholar
  114. Schoenberg, D. A., and Cheng, T. C. (1980). Phagocytic funnel-like pseudopodia in lectin-treated gastropod hemocytes. J. Invert. Pathol., 36, 141–143.CrossRefGoogle Scholar
  115. Sioli, H. (1935). Uber den Chemismus der Rapartur von Schalende-feren bei Helix pomata. Zool. Jahrb. Abt. Allg. Zool. Physiol. Tiere, 54, 507–534.Google Scholar
  116. Sparks, A. K. (1972). “Invertebrate Pathology: Noncommunicable Diseases.” Academic Press, New York.Google Scholar
  117. Sparks, A. K., and Pauley, G. B. (1964). Studies of the normal postmortem changes in the oyster, Crassostrea gigas(Thunberg). J. Insect Pathol., 6, 78–101.Google Scholar
  118. Stauber, L. A. (1950). The fate of India ink injected intracardial-ly into the oyster, Ostrea virginica Gmelin. Biol. Bull., 98, 227–241.PubMedCrossRefGoogle Scholar
  119. Stauber, L. A. (1961). Immunity in invertebrates, with special reference to the oyster. Proc. Natl. Shellfish. Assoc, 50, 7–20.Google Scholar
  120. Stein, J. E., and Mackin, J. G. (1955). A study of the nature of pigment cells of oysters and the relation of their numbers to the fungus disease caused by Dermocystidium marinum. Texas J. Sci., 7, 422–429.Google Scholar
  121. Takatsuki, S. (1934a). On the nature and functions of the amoebo-cytes of O. edulis. Quart. J. Microsc. Sci., 76, 379–431.Google Scholar
  122. Takatsuki, S. (1934b). Beitrage zur Physiologie des Austerherzens V. Uber den Ban des Herzens unter besonderer Beruch sichtigung seiner physiologischen Reaktionen. Sci. Rept. Tokyo Bunrika Daigaku, Sec. B, 2, 55–62.Google Scholar
  123. Tanaka, K., Takasugi, T., and Maoka, H. (1961). Morphological characteristics of the blood-corpuscles of the common oyster, Gryphea gigas. Bull. Jap. Soc. Sci. Fisher., 27, 365–371.CrossRefGoogle Scholar
  124. Tripp, M. R. (1958a). Disposal by the oyster of intracardially injected red blood cells of vertebrates. Proc. Natl. Shellfish. Assoc., 48, 143–147.Google Scholar
  125. Tripp, M. R. (1958b). Studies on the defense mechanism of the oyster. J. Parasitol., Sec. 2, 44, 35–36.Google Scholar
  126. Tripp, M. R. (1960). Mechanisms of removal of injected microorganisms from the American oyster, Crassostea virginica (Gmelin). Biol. Bull., 119, 210–223.CrossRefGoogle Scholar
  127. Tripp, M. R., Bisignani, L. A., and Kenny, M. T. (1966). Oyster amoebocytes in vitro. J. Invert. Pathol., 8, 137–140.CrossRefGoogle Scholar
  128. Turchini, J. (1923). Contribution a l’étude de l’histologie com-paree de la cellule renale, L’excretion urinaire chez les mollusques. Arch. Morph. Gen. Exp., 18, 7–253.Google Scholar
  129. Wagge, L. E. (1961). The activity of amoebocytes and of alkaline phosphatases during the regeneration of shell of the snail Helix aspersa. Quart. J. Microsc. Sci., 92, 307–321.Google Scholar
  130. Wagge, L. E. (1955). Amoebocytes. Intl. Rev. Cytol., 4, 31–78.CrossRefGoogle Scholar
  131. White, K. M. (1942). The pericardial cavity and the pericardial gland of the Lamellibranchia. Proc. Malac. Soc. London, 25, 37–88.Google Scholar
  132. Wilbur, K. M. (1964). Shell formation and regeneration. In: “Physiology of Mollusca,” (K. M. Wilbur and C. M. Yonge, eds.), volume I, pp. 243–282. Academic Press, New York.Google Scholar
  133. Yonge, C. M. (1923). The mechanism of feeding, assimilation, and digestion in Mya arenaria. Brit. J. Exp. Biol., 1 15–63.Google Scholar
  134. Yonge, C. M. (1926). Structure and physiology of the organs of feeding and digestion in Ostrea edulis. J. Mar. Biol. Assoc. U.K., 14, 295–388.CrossRefGoogle Scholar
  135. Yonge, C. M. (1935). On some aspects of digestion in ciliary feeding animals. J. Mar. Biol. Assoc. U.K., 20, 341–346.CrossRefGoogle Scholar
  136. Yonge, C. M. (1936). Mode of life, feeding, digestion and symbiosis with zooxanthellae in the Tridacnidae. Sci. Rept. Great Barrier Reef Exped., 1, 283–321.Google Scholar
  137. Yonge, C. M. (1937). Evolution and adaption in the digestive system of the Metazoa. Biol. Rev. Cambridge Phi. Soc, 12, 87–115.CrossRefGoogle Scholar
  138. Yonge, C. M. (1946). Digestion of animals by lamellibranchs. Nature, 157, 729.CrossRefGoogle Scholar
  139. Yonge, C. M., and Nicholas, H. M. (1940). Structure and function of the gut and symbiosis with zooxanthellae in Tridacna crispata(Oerst). Pap. Tortugas Lab., Carnegie Inst., 32, 287–301.Google Scholar
  140. Yoshino, T. P., and Cheng, T. C. (1976a). Fine structural localization of acid phosphatase in granulocytes of the pelecypod Mer-cenaria mercenaria. Trans. Am. Microsc. Soc., 95, 215–220.PubMedCrossRefGoogle Scholar
  141. Yoshino, T. P., and Cheng, T. C. (1976b). Experimentally induced elevation of aminopeptidase activity in hemolymph cells of the American oyster, Crassostrea virginica. J. Invert. Pathol., 27, 367–370.CrossRefGoogle Scholar
  142. Zacks, S. I. (1955). The cytochemistry of the amoebocytes and intestinal epithelium of Venus mercenaria (Lamellibranchiata) with remarks on a pigment resembling ceroid. Quart. J. Microsc. Sci., 96, 57–71.Google Scholar
  143. Zacks, S. I., and Welsh, J. H. (1953). Cholinesterase and lipase in the amoebocytes, intestinal epithelium and heart muscle of the quahog, Venus mercenaria. Biol. Bull., 105, 200–211.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Thomas C. Cheng
    • 1
  1. 1.Marine Biomedical Research Program and Department of Anatomy (Cell Biology)The Medical University of South CarolinaCharlestonUSA

Personalised recommendations