Protein Hemolymph Factors and their Roles in Invertebrate Defense Mechanisms: A Review

  • C. R. Fries
Part of the Comparative Pathobiology book series (CPATH, volume 6)


Although there is general agreement that invertebrates lack true immunoglobulins (Good and Papermaster, 1964) there are a variety of extracellular hemolymph factors which recognize nonself materials and may contribute significantly in resistance to disease.


Blood Group Horseshoe Crab Helix Pomatia Spiny Lobster Crassostrea Virginica 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acton, R. T., J. C. Bennet, E. E. Evans, and R. E. Schrohenloher. (1969). Physical and chemical characterization of an oyster heraagglutinin. J. Biol. Chem., 244, 4128–4135.PubMedGoogle Scholar
  2. Amirante, G. A. (1976). Production of heteroagglutinins in hemo-cytes of Leucophaea maderae L. Experientia, 32, 526–528.PubMedGoogle Scholar
  3. Amirante, G. A. and F. G. Mazzalai. (1978). Synthesis and localization of hemagglutinins in hemocytes of the cockroach Leucophaea maderae L. Dev. Comp. Immunol., 2, 735–740.PubMedGoogle Scholar
  4. Anderson, R. S. (1975). Phagocytosis by invertebrate cells in vitro: biochemical events and other characteristics compared with vertebrate phagocytic system. In: “Invertebrate Immunity,” (K. Maramorosch and R. E. Shope, eds.), pp. 153–180. Academic Press, New York.Google Scholar
  5. Anderson, R. S. (1980). Hemolysins and hemagglutinins in the coe-lomic fluid of a polychaete annelid, Glyceradibranchiata. Biol. Bull., 159, 259–268.Google Scholar
  6. Anderson, R. S. (1981). Induced hemolytic activity in Mercenaria mercenaria hemolymph. Dev. Comp. Immunol., 5, 575–585.PubMedGoogle Scholar
  7. Anderson, R. S. and B. M. Chain. (1982). Antibacterial activity in the coelomic fluid of a marine annelid, Glycera dibranchiata. J. Invert. Pathol., 40, 320–326.Google Scholar
  8. Anderson, R. S. and M. L. Cook. (1979). Induction of lysozymelike activity in the hemolymph and hemocytes of an insect, Spodopte-ra eridania. J. Invert. Pathol., 33, 197–203.Google Scholar
  9. Anderson, R. S., N. K. B. Day, and R. A. Good. (1972). Specific hemagglutinin and a modulator of complement in cockroach hemolymph. Inf. Imm., 5, 55–59.Google Scholar
  10. Anderson, R. S., B. Holmes, and R. A. Good. (1973). In vitrobactericidal capacity of Blaberus craniiferhemocytes. J. Invert. Pathol., 22, 127–135.Google Scholar
  11. Anderson, R. S. and R. A. Good. (1975). Opsonic involvement in phagocytosis by molluscan hemocytes. J. Invert. Pathol., 27, 57–64.Google Scholar
  12. Anderson, R. S. and R. A. Good. (1975). Naturally occurring hemagglutinin in a tunicate Halocynthia pyriformis. Biol. Bull., 148, 357–369.PubMedGoogle Scholar
  13. Arimoto, R. and M. R. Tripp. (1977). Characterization of a bacterial agglutinin in the hemolymph of the hard clam, Mercenaria mercenaria. J. Invert. Pathol., 30, 406–413.Google Scholar
  14. Aston, W. P. and J. S. Chadwick. (1978). Time and dose studies of the effect of cobra venom factor on the in vivoimmune response in Galleria mellonellato Pseudomonas aeruginosa. Dev. Comp. Immunol., 2, 425–434.PubMedGoogle Scholar
  15. Aston, W. P., T. S. Chadwick, and M. J. Henderson. (1976). Effect of cobra venom factor on the in vivo immune response in Galleria mellonellato Pseudomonas aeruginosa. J. Invert. Pathol., 27, 171–176.Google Scholar
  16. Baldo, B. A., G. Uhlenbruck, and G. Steinhausen. (1977). Invertebrate anti-galactans. A comparative study of agglutinins from the clam Tridacna maxima, the marine sponge Axinella poly-poides, and the anemone Cerianthus membranaceus. Comp. Biochem. Physiol., 56A, 343–351.Google Scholar
  17. Bang, F. B. (1966). Serologic response in a marine worm, Sipunculus nudus. J. Immunol., 96, 960–972.PubMedGoogle Scholar
  18. Bayne, C. J. (1980). Molluscan immunity: interactions between the immunogenic bacterium Pseudomonas aeruginosa and the internal defense system of the snail Helix pomatia. Dev. Comp. Immunol., 4, 215–222.PubMedGoogle Scholar
  19. Bayne, C. J., M. N. Moore, T. H. Carefoot, and R. J. Thompson. (1979). Hemolymph functions in Mytilus californianus: the cytochemistry of hemocytes and their responses to foreign implants and hemolymph factors in phagocytosis. J. Invert. Pathol., 34, 1–20.Google Scholar
  20. Bernheimer, A. W. (1952). Hemagglutinins in caterpillar bloods. Science, 115, 150–151.PubMedGoogle Scholar
  21. Bernheimer, H. A. and M. J. Kluger. (1976). Fever: effect of drug induced antipyresis on survival. Science, 193, 237–239.Google Scholar
  22. Bertheussen, K. (1981). Endocytosis by echinoid phagocytes in vitro. II. Mechanisms of endocytosis. Dev. Comp. Immunol., 5, 557–564.PubMedGoogle Scholar
  23. Bertheussen, K. (1983). Complement-like activity in sea urchin coelomic fluid. Dev. Comp. Immunol., 7, 21–31.PubMedGoogle Scholar
  24. Bishayee, S. and D. T. Dorai. (1980). Isolation and characterization of a sialic acid binding lectin (carcinoscorpin) from the Indian Horseshoe crab Carcinoscorpius votanda cauda. Biochem. Biophys. Acta., 623, 89–97.PubMedGoogle Scholar
  25. Boman, H. G., I. N. Faye, K. Paul, and T. Rasmuson. (1974). Insect immunity. I. Characteristics of an inducible cell-free antibacterial reaction in hemolymph of Samia cynthia pupae. Infect. Immun., 10, 136–145.PubMedGoogle Scholar
  26. Boman, H. G., I. Faye, A. Pye, and T. Rasmuson. (1978). The inducible immunity system of giant silk moths. Comp. Pathobiol., 4 145–163.Google Scholar
  27. Boman, H. G., I. Nilsson, and B. Rasmuson. (1972). Inducible antibacterial defense system in Drosophila. Nature, 237, 232–235.PubMedGoogle Scholar
  28. Boyd, W. C. and R. Brown. (1965). A specific agglutinin in the snail Olata lactea(Helix). Nature, 208, 593–594.Google Scholar
  29. Boyd, W. C, R. Brown, and L. G. Boyd. (1966). Agglutinins for human erythrocytes in mollusks. J. Immunol., 96, 301–303.PubMedGoogle Scholar
  30. Brahmi, Z. and E. L. Cooper. (1974). Characteristics of the agglutinin in scorpion Androctonus australis. Contemp. Topics Immunol., 4, 261–270.Google Scholar
  31. Brahmi, Z. and E. L. Cooper. (1980). Activaton mammalian lymphocytes by a partially purified fraction of scorpion hemolymph. Dev. Comp. Immunol., 4, 433–446.PubMedGoogle Scholar
  32. Bretting, H. and E. A. Kabat. (1976). Purification and characterization of the agglutinins from the sponge Axinella poly-poides and a study of their combining sites. Biochemistry, 15, 3228–3236.PubMedGoogle Scholar
  33. Bretting, H., E. A. Kabat, J. Liao, and M. E. A. Pereira. (1976). Purification and characterization of the agglutinins from the sponge Aaptos papillata and a study of their combining sites. Biochemistry, 15, 5029–5038.PubMedGoogle Scholar
  34. Bretting, H., H. Kalthoff, and S. Fehr. (1978). Studies on the relationship between lectins from Axinella polypoides agglutinating bacteria and human erythrocytes. J. Invert. Pathol., 32, 151–157.Google Scholar
  35. Briggs, J. D. (1958). Humoral immunity in lepidopterous larvae. J. Exp. Zool., 138, 155–188.PubMedGoogle Scholar
  36. Brown, R., L. R. Almodovar, H. M. Bhatia, and W. C. Boyd. (1968). Blood group specific agglutinins in invertebrates. J. Immunol., 100, 214–216.PubMedGoogle Scholar
  37. Casterlin, M. E. and W. W. Reynolds. (1977). Behavioral fever in crayfish. Hydrobiologia, 56, 99–101.Google Scholar
  38. Casterlin, M. E. and W. W. Reynolds. (1980). Fever and antipyresis in the crayfish Cambarus bartoni. J. Physiol., 303, 471–421.Google Scholar
  39. Chadwick, J. S. (1970). Relation of lysozyme concentration to acquired immunity against Pseudomonas aeruginosain Galleria mellonella. J. Invert. Pathol., 15, 455–456.Google Scholar
  40. Chadwick, J. S. (1975). Hemolymph changes with infection or induced immunity in insects and ticks. In: “Invertebrate Immunity,” (K. Maramorosch and R. E. Shope, eds.), pp. 241–271. Academic Press, New York.Google Scholar
  41. Chadwick, J. S., W. P. Aston, and J. R. Ricketson. (1980). Further studies on the effect and role of cobra venom factor on protective immunity in Galleria mellonella: activity in the response against Proteus mirabilis. Dev. Comp. Immunol., 4, 223–232.PubMedGoogle Scholar
  42. Chadwick, J. S., P. J. Deverno, K. L. Chung, and W. P. Aston. (1982). Effects of hemolymph from immune and non-immune larvae of Galleria mellonella on the ultrastructure of Pseudomonas aeruginosa. Dev. Comp. Immunol., 6, 433–440.PubMedGoogle Scholar
  43. Chakaureynaud-Duprat, P. and F. Izoard. (1977). Compared study of immunity between two genera of lumbricians: Eiseniaand Lum-bricus. In: “Developmental Immunology,” (J. B. Solomon and J. D. Horton, eds.), pp. 33–40. Amsterdam, Elsevier/North Holland.Google Scholar
  44. Cheng, T. C. (1969). An electrophoretic analysis of hemolymph proteins of the snail, Helisoma duryi normale experimentally challenged with bacteria. J. Invert. Pathol., 14, 60–81.Google Scholar
  45. Cheng, T. C. (1978). The role of lysosomal hydrolases in molluscan cellular response to immunologic challenge. Comp. Pathobiol., 4, 59–71.Google Scholar
  46. Cheng, T. C. and M. S. Butler. (1979). Experimentally induced elevations in acid phosphatase activity in hemolymph of Biom-phalaria glabrata (Mollusca). J. Invert. Pathol., 34, 119–124.Google Scholar
  47. Cheng, T. C, M. J. Chorney, and T. P. Yoshino. (1977). Lysozyme-like activity in the hemolymph of Biomphalaria glabrata-challenged with bacteria. J. Invert. Pathol., 29, 170–174.Google Scholar
  48. Cheng, T. C., V. G. Guida, and P. L. Gerhart. (1978). Aminopepti-dase and lysozyme activity levels and serum protein concentrations in Biomphalaria glabrata (Mollusca) challenged with bacteria. J. Invert. Pathol., 32, 297–302.Google Scholar
  49. Cheng, T. C, K. J. Lie, D. Heyneman, and C. S. Richards. (1978). Elevation of aminopeptidase activity in Biomphalaria glabrata(Mollusca) parasitized by Echinostoma lindoense(Trematoda). J. Invert. Pathol., 31, 57–62.Google Scholar
  50. Cheng, T. C. and G. E. Rodrick. (1974). Identification and characterization of lysozyme from the hemolymph of the soft shelled clam Mya arenaria. Biol. Bull., 147, 311–320.PubMedGoogle Scholar
  51. Cheng, T. C. and G. E. Rodrick. (1975). Lysosomal and other enzymes in the hemolymph of Crassostrea virginicaand Mercenaria merce-naria. Comp. Biochem. Physiol., 52B, 443–447.Google Scholar
  52. Cheng, T. C., G. E. Rodrick, D. A. Foley, and S. A. Koehler. (1975). Release of lysozyme from hemolymph cells of Mercenaria mercenariaduring phagocytosis. J. Invert. Pathol., 25, 261–265.Google Scholar
  53. Cheng, T. C. and B. M. Rudo. (1976). Chemotactic attraction of Crassostrea virginica hemolymph cells to Staphylococcus lactus. J. Invert. Pathol., 27, 137–139.Google Scholar
  54. Cheng, T. C., M. N. Bui, K. H. Howland, D. A. Schoenberg, and J. T. Sullivan. (1981). Effect of preinjection of Crassostrea virginica with bacteria on subsequent chemotactic response by its hemocytes. J. Invert. Pathol., 38, 122–126.Google Scholar
  55. Cheng, T. C. and K. H. Howland. (1979). Chemotactic attraction between hemocytes of the oyster, Crassostrea virginica, and bacteria. J. Invert. Pathol., 33, 204–210.Google Scholar
  56. Cheng, T. C. and B. G. Sanders. (1962). Internal defense mechanisms in mollusks and an electrophoretic analysis of a naturally occurring serum hemagglutinin in Viviparus malleatus. Proc. Penn. Acad. Sci., 36, 72–83.Google Scholar
  57. Cheng, T. C. and T. P. Yoshino. (1967a). Lipase activity in the serum and hemolymph cells of the soft-shelled clam, Mya arenaria, during phagocytosis. J. Invert. Pathol., 27, 243–245.Google Scholar
  58. Cheng, T. C. and T. P. Yoshino. (1976b). Lipase activity in the hemolymph of Biomphalaria glabrata challenged with bacterial lipids. J. Invert. Pathol., 28, 143–146.Google Scholar
  59. Cohen, E. (1970). A review of the nature and significance of hemagglutinins of selected invertebrates. In: “Protein Metabolism and Biological Function,” (C. P. Cianchi and R. Hilf, eds.), pp. 87–93. Rutgers University Press, New Brunswick, New Jersey.Google Scholar
  60. Cohen, E., G. H. U. Ilodi, Z. Brahmi, and J. Minowada. (1979). The nature of cellular agglutinins of Androctonus australis(Saharan scorpion) serum. Dev. Comp. Immunol., 3, 429–440.PubMedGoogle Scholar
  61. Cohen, E., S. C. Roberts, S. Nordling, and G. Uhlenbruck. (1972). Specificity of Limulus polyphemus agglutinins for erythrocyte receptor sites common to M and N antigenic determinants. Vox Sang., 23, 300–307.PubMedGoogle Scholar
  62. Cohen, E., A. W. Rowe, and F. C. Wissler. (1965). Heteroagglutinins of the horseshoe crab Limulus polyphemus. Life Sci., 4, 2009–2016.PubMedGoogle Scholar
  63. Cohen, E., M. Rozenberg, and E. J. Massaro. (1974). Agglutinins of Limulus polyphemus (horseshoe crab) and Birgus latro(coconut crab). Ann. N. Y. Acad. Sci., 234, 28–33.PubMedGoogle Scholar
  64. Coombe, D. R., P. L. Ey, S. F. Schluter, and C. R. Jenkin. (1981). An agglutinin in the hemolymph of an ascidian promoting adhesion of sheep erythrocytes to mouse macrophages. Immunology, 42, 661–669.PubMedGoogle Scholar
  65. Coombe, D. R., S. F. Schluter, P. L. Ey, and C. R. Jenkin. (1982). Identification of the HA-2 agglutinin in the ascidian Botryl-loides leachii as the factor promoting adhesion of sheep erythrocytes to mouse macrophages. Dev. Comp. Immunol., 6, 65–74.PubMedGoogle Scholar
  66. Cooper, E. L., C. A. E. Lemmi, and T. C. Moore. (1974). Agglutinins and cellular immunity in earthworms. Ann. N. Y. Acad. Sci., 234, 34–50.PubMedGoogle Scholar
  67. Cornick, J. W. and J. E. Stewart. (1973). Partial characterization of a natural agglutinin in the hemolymph of the lobster, Homarus americanus. J. Invert. Pathol., 21, 255–262.Google Scholar
  68. Cushing, J. E. (1967). Invertebrates, immunology and evolution. Fed. Proc., 26, 1666–1670.Google Scholar
  69. Cushing, J. E., N. L. Calaprice, and G. Trump. (1963). Blood group reactive substances in some marine invertebrates. Biol. Bull., 125, 69–80.Google Scholar
  70. Cushing, J. E., E. E. Evans, and M. L. Evans. (1971). Induced bactericidal responses of abalones. J. Invert. Pathol., 17, 446–448.Google Scholar
  71. Cushing, J. E., J. L. McNeely, and M. R. Tripp. (1969). Comparative immunology of sipunculid coelomic fluid. J. Invert. Pathol., 14, 4–12.Google Scholar
  72. Day, N. K. B., J. Geiger, J. Finstad, and R. A. Good. (1972). A starfish hemolymph factor which activates vertebrate complement in the presence of cobra venom factor. J. Immunol., 109, 104–107.Google Scholar
  73. Day, N. K. B., H. Gewurz, R. Johannsen, J. Finstad, and R. A. Good. (1970). Complement and complement-like activity in lower vertebrates and invertebrates. J. Exp. Med., 132, 941–950.PubMedGoogle Scholar
  74. deDuve, C. (1959). Lysosomes, a new group of cytoplasmic particles. In: “Subcellular Particles,” (T. Hayashi, ed.). Ronald Press, New York.Google Scholar
  75. DeVerno, P. J., W. P. Aston, and J. S. Chadwick. (1983). Transfer of immunity against Pseudomonas aeruginosa P11-1 in Galleria mellonellalarvae. Dev. Comp. Immunol., 17, 423–434.Google Scholar
  76. Dodd, R. V., A. P. MacLennan, and D. C. Hawkins. (1968). Hemag-glutinins from marine sponges. Vox Sang., 15, 386–391.PubMedGoogle Scholar
  77. Donlon, W. C. and C. T. Wemyss. (1976). Analysis of the hemagglu-tinin and the general protein element of the hemolymph of the West Indian Leaf Cockroach, Blaberus craniifer. J. Invert. Pathol., 28, 191–194.Google Scholar
  78. Dulbecco, R. and H. S. Ginsberg. (1973). Virology. In: “Microbiology,” pp. 1007–1449. Harper and Row, New York.Google Scholar
  79. Dunn, P. E. and D. R. Drake. (1983). Fate of bacteria injected into naive and immunized larvae of the tobacco hornworm Manduca sexta. J. Invert. Pathol., 41, 77–85.Google Scholar
  80. DuPasquier, L. and P. Duprat. (1968). Aspects humoraux et cellu-laires d’une immunite naturelle, nonspecifique chez l’oligo-chete Eisenia fetida. C. R. Acad. Sci. Paris, 266, 538–541.Google Scholar
  81. Eble, A. F. and M. R. Tripp. (1968). Enzyme histochemistry of phagosomes in oyster leucocytes. Bull. N. J. Acad. Sci., 13, 93.Google Scholar
  82. Eisen, H. N. (1974). “Immunology.” Harper and Row, New York.Google Scholar
  83. Evans, E. E., J. E. Cushing and M. L. Evans. (1973). Comparative immunology: sipunculid bactericidal responses. Infect. Immun., 8, 355–359.PubMedGoogle Scholar
  84. Evans, E. E., B. Painter, M. D. Evans, P. Weinheimer, and R. T. Acton. (1968). An induced bactericidin in the spiny lobster, Panulirus argus. Proc. Soc. Exp. Biol. Med., 128, 394–398.PubMedGoogle Scholar
  85. Evans, E. E., P. F. Weinheimer, and R. T. Acton. (1969). Induced bactericidal response in a sipunculid worm. Nature, 222, 695.PubMedGoogle Scholar
  86. Evans, E. E., P. F. Weinheimer, B. Painter, R. T. Acton, and M. L. Evans. (1969). Secondary and tertiary responses of the induced bactericidin from the West Indian spiny lobster, Panulirus argus. J. Bacteriol., 98, 943–946.PubMedGoogle Scholar
  87. Faye, I. O., A. Pye, T. Rasmusson, H. G. Boman, and I. A. Boman. (1975). Insect immunity. II. Simultaneous induction of antibacterial activity and selective synthesis of some hemolymph proteins in diapausing pupae of Hyalophora cecropia and Samia cynthia. Infect. Immun., 12, 1426–1438.PubMedGoogle Scholar
  88. Feir, D. and M. A. Walz. (1964). An agglutinating factor in insect hemolymph. Ann. Entomol. Soc., 57, 388.Google Scholar
  89. Feng, S. Y. (1974). Lysozyme-like activities in the hemolymph of Crassostrea virginica. Contemp. Top. Immunobiol. 4, 225–231.Google Scholar
  90. Fernandez-Moran, H., J. J. Marchalonis, and G. M. Edelman. (1968). Electron microscopy of a hemagglutinin from Limulus polyphemus. J. Mol. Biol., 32, 467–469.PubMedGoogle Scholar
  91. Finstad, C. L., G. W. Litman, J. Finstad, and R. A. Good. (1972). The evolution of the immune response. XIII. The characterization of purified erythrocyte agglutinins from two invertebrate species. J. Immunol., 108, 1704–1711.PubMedGoogle Scholar
  92. Finstad, C. L., R. A. Good, and G. W. Litman. (1974). The erythrocyte agglutinin from Limulus polyphemus hemolymph: molecular structure and biological function. Ann. N. Y. Acad. Sci. 234, 170–182.PubMedGoogle Scholar
  93. Font, W. F. (1980). Effects of hemolymph of the American oyster, Crassostrea virginica, on marine cercariae. J. Invert. Pathol., 36, 41–47.Google Scholar
  94. Frings, H., E. Goldberg and J. C. Arentzen. (1948). Antibacterial action of the blood of the large milkweed bug. Science, 108, 689–690.PubMedGoogle Scholar
  95. Fuke, M. T. and T. Sugai. (1972). Studies on the naturally occurring hemagglutinin in the coelomic fluid of an ascidian. Biol. Bull., 143, 140–149.Google Scholar
  96. Furman, R. M. and T. G. Pistole. (1976). Bactericidal activity of hemolymph from the horseshoe crab, Limulus polyphemus. J. Invert. Pathol., 28, 239–244.Google Scholar
  97. Garte, S. J. and C. S. Russel. (1976). Isolation and characterization of a hemagglutinin from Amphitrite ornata, a poly-chaetous annelid. Biochem. Biophys. Acta., 439, 368–379.PubMedGoogle Scholar
  98. Ghidalia, W. P., Lambin, and J. M. Fine. (1975). Electrophoretic and immunologic studies of a hemagglutinin in the hemolymph of a decapod Macropipus puber. J. Invert. Pathol., 25, 151–157.Google Scholar
  99. Gilbertson, D. E. and F. J. Etges. (1967). Hemagglutinins in the hemolymph of planorbid snails. Ann. Trop. Med. Parasitol., 61 144–147.PubMedGoogle Scholar
  100. Gingrich, R. E. (1964). Acquired humoral immune response of the large milkweed bug, Onocpeltus fasciatus, to injected materials. J. Insect Physiol., 10, 179–194.Google Scholar
  101. Gold, E. R., C. F. Phelphs, S. Khalap, and P. Blading. (1974). Observations on Axinella sp. hemagglutinin. Ann. N. Y. Acad. Sci., 234, 122–128.PubMedGoogle Scholar
  102. Goldenberg, P. Z. and A. H. Greenberg. (1983). Functional heterogeneity of carbohydrate-binding hemolymph proteins: evidence of a nonagglutinating opsonin in Homarus americanus. J. Invert. Pathol., 42, 33–41.Google Scholar
  103. Good, R. A. and B. W. Papermaster. (1964). Ontogeny and phylogeny of adaptive immunity. Adv. Immunol., 4, 1–115.Google Scholar
  104. Graham, H. A. (1968). A hemolytic enzyme in the hemolymph of the clam Mercenaria mercenaria. M.S. Thesis. University of Delaware, Newark, Delaware.Google Scholar
  105. Hall, J. L. and D. T. Rowlands. (1974). Heterogeneity of lobster agglutinins. I. Purification and physiochemical characterization. Biochemistry, 13, 821–827.PubMedGoogle Scholar
  106. Hall, J. L. and D. T. Rowlands. (1974). Heterogeneity of lobster agglutinins. II. Specificity of agglutinin-erythrocyte binding. Biochemistry, 13, 828–832.PubMedGoogle Scholar
  107. Häll, L. and K. Söderhäll. (1982). Purification and properties of a protease inhibitor from crayfish hemolymph. J. Invert. Pathol., 39, 29–37.Google Scholar
  108. Hammarstrom, S. (1974). Structure, specificity, binding properties and some biological activities of a blood group A — reactive hemagglutinin from the snail Helix pomatia. Ann. N. Y. Acad. Sci., 234, 183–197.PubMedGoogle Scholar
  109. Hammarstrom, S. and E. A. Kabat. (1969). Purification and characterization of a blood-group A reactive hemagglutinin from the snail Helix pomatia and a study of its combining site. Biochemistry, 8, 2969–2705.Google Scholar
  110. Hammarstrom, S. and E. A. Kabat. (1971). Studies on the specificity and binding properties of the blood group A reactive hemagglutinin from Helix pomatia. Biochemistry, 10, 1684–1692.PubMedGoogle Scholar
  111. Hardy, S. W., T. C. Fletcher, and J. A. Olafsen. (1979). Aspects of cellular and humoral defense mechanisms in the Pacific oyster, Crassostrea gigas. In: “Developmental Immunobiology,” (J. B. Solomon and J. D. Horton, eds.), pp. 59–66. Elsevier/North Holland, Amsterdam.Google Scholar
  112. Hartman, A. L., P. A. Campbell, and C. A. Abel. (1978). An improved method for the isolation of lobster lectins. Dev. Comp. Immunol., 2, 617–625.PubMedGoogle Scholar
  113. Hink, W. F. and J. D. Briggs. (1968). Bactericidal factors in hemolymph from normal and immune wax moth larvae, Gallaria mel-lonella. J. Insect Physiol., 14, 1025–1034.Google Scholar
  114. Howland, K. H. and T. C. Cheng. (1982). Identification of bacterial chemoattractants for oyster (Crassostrea virginica) hemocytes. J. Invert. Pathol., 39, 123–132.Google Scholar
  115. Huang, M. T. F., A. F. Eble, and C. S. Hammen. (1981). Immune response of the prawn, Macrobrachium rosenbergii, to bacterial infection. J. Invert. Pathol., 38, 213–219.Google Scholar
  116. Hultmark, D., H. Steiner, T. Rasmuson, and H. G. Boman. (1980). Insect immunity. Purification of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecro-pia. Eur.J. Biochem., 106, 7–16.Google Scholar
  117. Ishiyama, I. and G. Uhlenbruck. (1972). Further studies on the specificity of the anti-A agglutinin from Helix pomatia. Comp. Biochem. Physiol., 42A, 269-276.Google Scholar
  118. Janoff, A. and E. Hawrylko. (1964). Lysosoraal enzymes in invertebrate leucocytes. J. Cell Comp. Physiol., 63, 267–271.Google Scholar
  119. Jenkins, C. R. (1976). Factors involved in the recognition of foreign material by phagocytic cells from invertebrates. In: “Comparative Immunology,” (J. Marchalonis, ed.), pp. 80–97. John Wiley and Sons, New York.Google Scholar
  120. Jenkins, C. R. and D. Rowley. (1970). Immunity in invertebrates. The purification of a hemagglutinin to rat and rabbit erythro-cytes from the hemolymph of the Murray mussel (Velesunio ambi-guus). Aust. J. Exp. Biol. Med. Sci., 48, 129–137.Google Scholar
  121. Jeong, K. H., S. Sussraan, S. D. Rosen, K. J. Lie, and D. Heyneman. (1981). Distribution and variation of hemagglutinating activity in the hemolymph of Biomphalaria glabrata. J. Invert. Pathol., 38, 256–263.Google Scholar
  122. Johannsen, R., R. S. Anderson, R. A. Good, and N. K. Day. (1973). A comparative study of the bacterial activity of horseshoe crab (Limulus polyphemus) hemolymph and vertebrate serum. J. Invert. Pathol., 22, 372–376.Google Scholar
  123. Johnson, H. (1964). Human blood group A1 specific agglutinin of butter clam Saxidomus giganteus. Science, 146, 548–549.PubMedGoogle Scholar
  124. Johnson, P. T. (1969). The coelomic elements of sea urchins (Strongylocentrotus). III. In vitroreactions to bacteria. J. Invert. Pathol., 13, 42–62.Google Scholar
  125. Johnson, P. T. and F. A. Chapman. (1970). Comparative studies on the in vitroresponse of bacteria to invertebrate body fluids. I. Dendrostomum zostericolum, a sipunculid worm. J. Invert. Pathol., 16, 127–138.Google Scholar
  126. Johnson, P. T. and F. A. Chapman. (1970). Comparative studies on the in vitro response of bacteria to invertebrate body fluids. II. Aplysia californica(sea hare) and Ciona intestinalis (tunicate). J. Invert. Pathol., 16, 259–267.Google Scholar
  127. Kalmakoff, J., B. R. G. Williams, and F. J. Austin. (1977). Antiviral response in insects? J. Invert. Pathol., 29, 44–49.Google Scholar
  128. Karp, R.D. and L. A. Rheins. (1980). Induction of specific humoral immunity to soluble proteins in the American cockroach (Peri-planeta americana). II. Nature of the secondary response. Dev. Comp. Immunol., 4, 629–639.PubMedGoogle Scholar
  129. Kascsak, R. J. and M. J. Lyons, (1974). Attempts to demonstrate the interferon defense mechanism in cultured mosquito cells. Arch. Gesamte Virusforsch., 45, 148–154.Google Scholar
  130. Kinoshita, T. and K. Inoue. (1977). Bactericidal activity of the normal, cell-free hemolymph of silkworms (Bombyx mori). Infect. Immun., 16, 32–36.PubMedGoogle Scholar
  131. Kluger, M. J. (1979). Fever in ectotherms: evolutionary implications. Am. Zool., 19, 295–304.Google Scholar
  132. Kluger, M. J., D. H. Ringler, and M. R. Anver. (1975). Fever and survival. Science, 188, 166–168.PubMedGoogle Scholar
  133. Krassner, S. M. and B. Flory. (1970). Antibacterial factors in the sipunculid worms, Golfingia gouldiiand Dendrostomum pyroides. J. Invert. Pathol., 16, 331–338.Google Scholar
  134. Lackie, A. M. (1981). Immune recognition in insects. Dev. Comp. Immunol., 5, 191–204.PubMedGoogle Scholar
  135. Li, M. F. and C. Flemming. (1967). Hemagglutinins from oyster hemolymph. Can.J. Zool., 45, 1225–1234.Google Scholar
  136. Malke, H. (1965). Uber das vorkommen von lysozym in insekten. Allg. Mikrobiol., 5, 42–47.Google Scholar
  137. Marks, D. H., E. A. Stein, and E. L. Cooper. (1979). Chemotactic attraction of Lumbricus terrestriscoelomocytes to foreign tissue. Dev. Comp. Immunol., 3, 277–285.PubMedGoogle Scholar
  138. Marchalonis, J. J. and G. M. Edelman. (1968). Isolation and characterization of a hemagglutinin from Limulus polyphemus. J. Mol. Biol., 32, 453–465.Google Scholar
  139. Marchalonis, J. J. and G. W. Warr. (1978). Phylogenetic origins of immune recognition: naturally occurring DNP-binding molecules in chordate sera and hemolymph. Dev. Comp. Immunol., 2, 443–460.PubMedGoogle Scholar
  140. McCumber, L. J., E. M. Hoffmann, and L. W. Clem. (1979). Recognition of viruses and xenogeneic proteins by the blue crab Calli-nectes sapidus: a humoral receptor for T2 bacteriophage. J. Invert. Pathol., 33, 1–9.Google Scholar
  141. McDade, J. E. and M. R. Tripp. (1967). Mechanism of agglutination of red blood cells by osyter hemolymph. J. Invert. Pathol., 9, 523–530.Google Scholar
  142. McDade, J. E. and M. R. Tripp. (1967a), Lysozyrae in the hemolymph of the oyster Crassostrea virginica. J. Invert. Pathol., 9, 531–535.Google Scholar
  143. McDade, J. E. and M. R. Tripp, (1967b). Lysozyme in oyster mantle mucus. J. Invert. Pathol., 9, 581–582.Google Scholar
  144. McKay, D. and C. R. Jenkins. (1970). Immunity in invertebrates. The role of serum factors in the phagocytosis of erythrocytes by haemocytes of the freshwater crayfish (Parachaerups bicari-natus). Aust. J. Exp. Biol. Med. Sci., 48, 139–150.PubMedGoogle Scholar
  145. Messner, B. and W. Mohrig. (1969). Zum Lysozym — vorkommen bei muscheln (Anadonta anatina). Zool. Jahrb Physiol., 74, 427–435.Google Scholar
  146. Michelson, E. H. and L. Dubois. (1977). Agglutinins and lysins in the molluscan family Planorbidae: a survey of hemolymph, egg masses and albumin gland extracts. Biol. Bull., 153, 217–219.Google Scholar
  147. Miller, R. L. (1982). A sialic acid-specific lectin from the slug Limax flavus. J. Invert. Pathol., 39, 210–214.Google Scholar
  148. Miller, V. H., R. S. Ballback, G. B. Pauley, and S. M. Krassner. (1972). A preliminary physiochemical characterization of an agglutinin found in the hemolymph of the crayfish Procambarus clarkii. J. Invert. Pathol., 19, 83–93.Google Scholar
  149. Mohrig, W. and B. Messner. (1968). Immunreaktionen bei insekten: I. Lysozym als grundlegender antibakterieller faktor im humoralen Abwehrmechanismus der insekten. Biol. Zentralbl., 87, 439–470.Google Scholar
  150. Murray, A. M. and P. S. Morahan. (1973). Studies of interferon production in Aedes albopticusmosquito cells. Proc. Soc. Exp. Biol. Med., 142, 11–15.PubMedGoogle Scholar
  151. Nachum, R., S. E. Siegel, J. D. Sullivan, and S. W. Watson. (1978). Inactivation of endotoxin by Limulus amoebocyte lysate. J. Invert. Pathol., 32, 51–58.Google Scholar
  152. Nachum, R., S. W. Watson, J. D. Sullivan, and S. E. Siegel. (1979). Antimicrobial defense mechanisms in the horseshoe crab Limulus polyphemus amoebocyte lysate. J. Invert. Pathol., 33, 290–299.Google Scholar
  153. Nappi, A. J. and J. G. Stoffolano. (1972). Distribution of haemocytes in larvae of Musca domestica and Musca autumnalis and possible chemotaxis during parasitization. J. Insect. Physiol., 18, 169.Google Scholar
  154. Niedel, J. E., I. Kahane and P. Cuatrecasas. (1979). Receptor-mediated internalization of fluorescent chemotactic peptide by human nuetrophils. Science, 205, 1412–1414.PubMedGoogle Scholar
  155. Nielson, H. E., C. Koch, and O. Drachmann, (1983). Non-respiratory haemolymph proteins in the vineyard snail Helix pomatia.Changes after phagocytosis in vivo. Dev. Comp. Immunol., 7, 413–422.Google Scholar
  156. Parinello, N. and C. Canicatti. (1982). Carbohydrate binding specificity and purification by biospecific affinity chromatogra-phy of Ascidia malagaTraust hemagglutinins. Dev. Comp. Immunol., 6, 53–64.Google Scholar
  157. Parrinello, N., C. Canicatti, and D. Rindone. (1979). Naturally occurring hemagglutinins in the coelomic fluids of the echino-derms Holothuria polii and Holothuria tubulosa. Boll. Zool., 43, 259–272.Google Scholar
  158. Parrinello, N., D. Rindone, and C. Canicatti. (1979). Naturally occurring hemolysins in the coelomic fluid of Holothuria poliidelle chiaie (Echinodermata). Dev. Comp. Immunol., 3, 45–54.PubMedGoogle Scholar
  159. Pauley, G. B. (1974). Comparison of a natural agglutinin in the hemolymph of the blue crab, Callinectes sapidus, with agglutinins of other invertebrates. Contemp. Top. Immunobiol., 4, 241–260.Google Scholar
  160. Pauley, G. B. (1974). Physiochemical properties of the natural agglutinins of some mollusks and crustaceans. Ann. N. Y. Acad. Sci., 234, 145–160.PubMedGoogle Scholar
  161. Pauley, G. B., G. A. Granger, and S. M. Krassner. (1971). Characterization of a natural agglutinin present in the hemolymph of the California sea hare, Aplysia californica. J. Invert. Pathol., 28, 207–218.Google Scholar
  162. Pauley, G. B., S. M. Krassner, and F. A. Chapman. (1971). Bacterial clearance in the California sea hare Aplysia californica. J. Invert. Pathol., 18, 227–239.Google Scholar
  163. Pemberton, R. T. (1970). Hemagglutinins from the slug Limax flavus. Vox Sang., 18, 74–76.PubMedGoogle Scholar
  164. Perin, J. R. and P. Jolles. (1972). The lysozyme from Nephthys hombergi. Biochem. Biophys. Acta, 263, 683–689.PubMedGoogle Scholar
  165. Pistole, T. G. (1978). Broad-spectrum bacterial agglutinating activity in the serum of the horseshoe crab, Limulus polyphemus. Dev. Comp. Immunol., 2, 65–76.PubMedGoogle Scholar
  166. Pistole, T. G. (1981). Interaction of bacteria and fungi with lectins and lectin-like substances. Ann. Rev. Microbiol., 35, 85–112.Google Scholar
  167. Pistole, T. G. and J. L. Briko. (1978). Bactericidal activity of amoebocytes form the horseshoe crab, Limulus polyphemus. J. Invert. Pathol., 31, 376–382.Google Scholar
  168. Pistole, T. E. and R. M. Furman. (1976). Serum bactericidal activity in the horseshoe crab, Limulus polyphemus. Infect. Immun., 14, 888–893.PubMedGoogle Scholar
  169. Powning, R. F. and W. J. Davidson. (1973). Studies on insect bacteriolytic enzymes. I. Lysozyme in hemolymph of Galleria mellonellaand Bombyx mori. Comp. Biochem. Physiol., 45B, 669–686.Google Scholar
  170. Prokop, O. and D. Schlesinger. (1966). P1 blood group substance in Lumbricus terrestrisand Ascaris suum. Nature, 209, 1255.PubMedGoogle Scholar
  171. Prowse, R. H. and N. N. Tait. (1969). In vitro phagocytosis by amoebocytes from the hemolymph of Helix aspersa. I. Evidence for opsonic factor(s) in serum. Immunology, 17, 437–443.PubMedGoogle Scholar
  172. Pye, A. E. and H. G. Boman. (1977). Insect immunity. III. Purification and partial characterization of immune protein P5 from hemolymph of Hyalophora cecropia pupae. Infect Immun., 17, 408–414.PubMedGoogle Scholar
  173. Rabin, H. and F. B. Bang. (1964). In vitro studies of the antibacterial activity of Golfingia gouldiicoelomic fluid. J. Insect. Pathol., 6, 457–465.Google Scholar
  174. Renwrantz, L. and W. Mohr. (1978). Opsonizing effect of serum and albumin gland extract on the elimination of human erythrocytes from the circulation of Helix pomatia. J. Invert. Pathol., 31, 164–170.Google Scholar
  175. Renwrantz, L. and G. Uhlenbruck. (1974). Blood group like substances in some marine invertebrates. I. Blood group A reactive substances in the ascidian Phallusia mammilataand in the lan-celet Amphioxus lanceolotas. Vox Sang, 26, 385–391.PubMedGoogle Scholar
  176. Renwrantz, L. and G. Uhlenbruck. (1974). Blood group like substances in some marine invertebrates. III. Glyproteins with blood group A specificity in the cephalopods, Sepia officinalis and Loligo vulgaris. J. Exp. Zool., 188, 65–70.PubMedGoogle Scholar
  177. Rheins, L. A. and R. D. Karp. (1982). An inducible humoral factor in the American cockroach (Periplaneta americana): precipitin activity that is sensitive to a proteolytic enzyme. J. Invert. Pathol., 40, 190–196.Google Scholar
  178. Rheins, L. A., R. D. Karp, and A. Butz. (1980). Induction of specific humoral immunity to soluble proteins in the American cockroach (Periplaneta americana). I. Nature of the primary response. Dev. Comp. Immunol., 4, 447–458.PubMedGoogle Scholar
  179. Roch, P., P. Valembois, N. Davant, and M. Lasseques. (1981). Protein analysis of earthworm coelomic fluid. II. Isolation and biochemical characterization of the Eisenia fetida andreifactor. Comp. Biochem. Physiol., 69B, 829–830.Google Scholar
  180. Rodrick, G. E. and T. C. Cheng. (1974). Activities of hemolymph enzymes in Biomphalaria glabrata. J. Invert. Pathol., 24, 374–375.Google Scholar
  181. Rostam-Abadi, H. and T. G. Pistole. (1982). Lipopolysaccharide-binding lectin from the horseshoe crab, Limulus polyphemus, with specificity for 2-keto-3-deoxyoctonate. Dev. Comp. Immunol., 6, 209–281.PubMedGoogle Scholar
  182. Rowley, A. F. and N. A. Ratcliffe. (1980). Insect erythrocyte agglutinins. J72 vitroopsonization experiments with Clitumnus extradentatus and Periplaneta americana haemocytes. Immunology, 40, 483–492.PubMedGoogle Scholar
  183. Ryoyama, K. (1973). Studies on the biological properties of coelomic fluid of sea urchin. I. Naturally occurring hemolysin in sea urchin. Biochem. Biophys. Acta, 320, 157–161.PubMedGoogle Scholar
  184. Ryoyama, K. (1974). Studies on the biological properties of coelom-ic fluid of sea urchin. II. Naturally occurring hemagglutinin in sea urchin. Biol. Bull., 146, 404–414.PubMedGoogle Scholar
  185. Schluter, S. F., P. L. Ey, D. R. Keough, and C. R. Jenkin. (1981). Identification of two carbohydrate-specific erythrocyte agglutinins in the hemolymph of the protochordate, Botrylloides leachii. Immunology, 42, 241–250.PubMedGoogle Scholar
  186. Schmid, L. S. (1975). Chemotaxis of hemocytes from the snail Viviparus malleatus. J. Invert. Pathol., 25, 125–131.Google Scholar
  187. Schubert, I. and B. Messner. (1971). Untersuchungen über das vorkommen von lysozym bei Anneliden. Zool. Jahrb Physiol., 76, 36–50.Google Scholar
  188. Scott, M. T. (1971). Recognition of foreignness in invertebrates, II. In vitrostudies of cockroach phagocytic hemocytes. Immunology, 21, 817–828.PubMedGoogle Scholar
  189. Scott, M. T. (1971). A naturally occurring hemagglutinin in the hemolymph of the American cockroach (Periplaneta americana). Arch. Zool. Exp. Gen., 122, 73–80.Google Scholar
  190. Scott, M. T. (1972). Partial characterization of the hemagglutina-ting activity in the hemolymph of the American cockroach (Periplaneta americana). J. Invert. Pathol., 19, 66–71.Google Scholar
  191. Seaman, G. R. and N. L. Robert. (1968). Immunological response of male cockroaches to injection of Tetrahymena pyriformis. Science, 161, 1359–1361.PubMedGoogle Scholar
  192. Sharon, N. and H. Lis. (1972). Lectins: cell-agglutinating and sugar specific proteins. Science, 177, 947–959.Google Scholar
  193. Sindermann, C. J. and D. F. Mairs. (1959). A major blood group system in Atlantic sea herring. Copeia, 3, 228–232.Google Scholar
  194. Sminia, T., W. P. W. van der Knaap, and P. Edelenbosch. (1979). The role of serum factors in phagocytosis of foreign particles by blood cells of the freshwater snail Lymnaea stagnalis. Dev. Comp. Immunol., 3, 37–44.PubMedGoogle Scholar
  195. Smith, A. C. (1977). Immunologic reactions of the sea cucumber Holothuria cinerascensto serum from the milkfish Chanos chanos. J. Invert. Pathol., 29, 326–331.Google Scholar
  196. Söderhäll, K., L. Hall, T. Unestram, and L. Nyhlen. (1979). Attachment of phenoloxidase to fungal cell walls in arthropod immunity. J. Invert. Pathol., 34 285–294.Google Scholar
  197. Stanislawski, E., L. Renwrantz, and W. Becker. (1976). Soluble blood group reactive substances in the hemolymph of Biomphalar-ia glabrata (Mollusca). J. Invert. Pathol., 28, 301–308.Google Scholar
  198. Stein, E. A., A. Wojdani, and E. L. Cooper. (1982). Agglutinins in the earthworm Lumbricus terrestris: naturally occurring and induced. Dev. Comp. Immunol., 6, 407–421.PubMedGoogle Scholar
  199. Stein, P. C. and P. F. Basch. (1979). Purification and binding properties of hemagglutinin from Biomphalaria glabrata. J. Invert. Pathol., 33, 10–18.Google Scholar
  200. Stein, E. A. and E. L. Cooper. (1981). The role of opsonins in phagocytosis by coelomocytes of the earthworm, Lumbricus terrestris. Dev. Comp. Immunol., 5, 415–425.Google Scholar
  201. Stephens, J. M. (1963). Bactericidal activity of hemolymph of some normal insects, J. Insect Pathol., 5, 61–65.Google Scholar
  202. Stephens, J. M. and J. H. Marshall. (1962). Some properties of an immune factor isolated from the blood of actively immunized wax moth larvae. Can. J. Microbiol., 8, 719–725.Google Scholar
  203. Stewart, J. E. and B. M. Zwicker. (1972). Natural and induced bactericidal activities in the hemolymp of the lobster, Homerus americanus: products of hemocyte-plasma interaction. Can. J. Microbiol., 18, 1499–1509.PubMedGoogle Scholar
  204. Stuart, A. E. (1968). The recitulo-endothelial apparatus of the lesser octopus, Eledone cirrosa. J. Pathol. Bacteriol., 96, 401–402.PubMedGoogle Scholar
  205. Triplett, E. L., J. E. Cushing, and G. L. Durall. (1958). Observations on some immune reactions of the sipunculid Dendrostomum zostericolum. Am. Naturalist, 92, 287–293.Google Scholar
  206. Tripp, M. R. (1966). Hemagglutinin in the blood of the oyster Crassostrea virginica. J. Invert. Pathol., 8, 478–484.Google Scholar
  207. Tripp, M. R. (1975). Humoral factors and molluscan immunity. In: “Invertebrate Immunity. Mechanisms of Invertebrate Vector-Parasite Relations,” (K. Maramorosch and R. E. Shope, eds.), pp. 201–223. Academic Press, New York.Google Scholar
  208. Tyler, A. (1946). Natural agglutinins in the body fluids and seminal fluids of various invertebrates. Biol. Bull., 90, 213–219.PubMedGoogle Scholar
  209. Tyler, A. and C. B. Metz. (1945). Natural heteroagglutinins in the serum of the spiny lobster, Panulirus interruptus. I. Taxo-nomic range of activity, electrophoretic and immunizing properties. J. Exp. Zool., 100, 387–406.PubMedGoogle Scholar
  210. Tyler, A. and B. T. Scheer. (1945). Natural heteroagglutinins in the serum of the spiny lobster Panulirus interruptus. II. Chemical and antigenic relations to blood proteins. Biol. Bull., 89, 193–200.PubMedGoogle Scholar
  211. Tyson, C. J. and C. R. Jenkins. (1974). Phagocytosis of bacteria in vitro by hemocytes from the crayfish (Parachaeraps bicarina-tus). Aust. J. Exp. Biol. Med. Sci., 52, 341.PubMedGoogle Scholar
  212. Uhlenbruck, G. and O. Prokop. (1966). An agglutinin from Helix pomatia reacts with terminal N-acetyl-D-galactosamine. Vox Sang., 11, 519–520.PubMedGoogle Scholar
  213. Uhlenbruck, G., G. I. Pardoe, O. Prokop, and I. Ishiyama. (1972). The serological specificity of snail agglutinins (protectins). Anim. Blood Groups Biochem. Genet., 3, 125–139.Google Scholar
  214. Uhlenbruck, G., U. Reifenberg, and O. Prokop. (1969). Isolation of blood group A substances from Tubifex rivulorum. Experimentia, 25, 1180–1181.Google Scholar
  215. Uhlenbruck, G., G. Steinhausen, and B. A. Baldo. (1977). Different antigalactans in the hemolymph of Tridacna maxima and T. gigas. Comp. Biochem. Physiol., 56B, 329–333.Google Scholar
  216. Unestam, T. and R. Ajaxon. (1976). Phenol oxidation in soft cuticle and blood of crayfish compared with that in other arthropods and activation of the phenol oxidases by fungal and other cell walls. J. Invert. Pathol., 27, 287–295.Google Scholar
  217. Unestam, T. and K. Soderhall. (1977). Soluble fragments from fungal cell walls elicit defense reactions in crayfish. Nature, 267, 45–46.PubMedGoogle Scholar
  218. Vaith, P., G. Uhlenbruck, W. E. G. Muller, and G. Holz. (1979). Sponge aggregation factor and sponge hemagglutinin: possible relationships between two different molecules. Dev. Comp. Immunol., 3, 399–416.PubMedGoogle Scholar
  219. Valembois, P., P. Roch, M. Lasseques, and P. Cassand. (1982). Antibacterial activity of the hemolytic system from the earthworm Eisenia fetida andrei. J. Invert. Pathol., 40 21–27.Google Scholar
  220. Vasta, G. R. and E. Cohen. (1982). The specificity of Centruroides sculpturatus Ewing (Arizona lethal scorpion) hemolymph agglu-tinin. Dev. Comp. Immunol., 6, 219–230.PubMedGoogle Scholar
  221. Vasta, G. R., G. H. U. Ilodi, E. Cohen, and Z. Brahmi. (1982). A comparative study on the specificity of Androctonus australis(Saharan scorpion) and Limulus polyphemus (horseshoe crab) agglutinins. Dev. Comp. Immunol., 6, 625–634.PubMedGoogle Scholar
  222. Vasta, G. R., G. W. Warr, and J. J. Marchalonis. (1983). Sereo-logical characterization of humoral lections from the freshwater prawn Macrobrachium rosenbergii. Dev. Comp. Immunol., 7, 13–20.PubMedGoogle Scholar
  223. Voigtmann, R., B. Salfner, and G. Uhlenbruck. (1971). Studies on broad spectrum agglutinins. IX. Specific and unspecific reactions between Limulus polyphemus hemolymph and snail extracts with anti-A specificity. Z. Immnforsch., 141, 488–494.Google Scholar
  224. Wago, H. (1980). Humoral factors promoting the adhesive properties of the granular cells and plasmatocytes of the silkworm, Bombyx mori, and their possible role in the initial cellular reactions to foreignness. Cell Immunol., 54, 155–169.PubMedGoogle Scholar
  225. Wardlaw, A. C. and S. E. Unkles. (1978). Bactericidal activity of coelomic fluid from the sea urchin Echinus esculentus. J. Invert. Pathol., 32, 25–34.Google Scholar
  226. Weinheimer, P. F., R. T. Acton, S. Sawyer, and E. E. Evans. (1969). Specificity of the induced bactericidin of the West Indian spiny lobster, Panulirus argus. J. Bacteriol., 98, 947–948.Google Scholar
  227. Weinheimer, P. F., R. T. Acton, J. E. Cushing, and E. E. Evans. (1970). Reactions of spinuculid coelomic fluid with erythro-cytes. Life Sci., 9, 145–152.PubMedGoogle Scholar
  228. Weinheimer, P. F., E. E. Evans, R. T. Acton, and B. Painter. (1969). Induced response of the lobster Panulirus argus. Fed. Proc., 28, 752.Google Scholar
  229. Wojdani, A., E. A. Stein, C. A. Lemmi, and E. L. Cooper. (1982). Agglutinins and proteins in the earthworm, Lumbricus terres-tris, before and after injection of erythrocytes, carbohydrates, and other materials. Dev. Comp. Immunobiol., 6, 613–624.Google Scholar
  230. Wright, R. K. (1974). Protochordate immunity. I. Primary immune response of the tunicate Ciona intestinalis to vertebrate erythrocytes. J. Invert. Pathol., 24, 29–36.Google Scholar
  231. Yeaton, R. W. (1981). Invertebrate lectins: I. Occurrence. Dev. Comp. Immunol., 5, 391–402.PubMedGoogle Scholar
  232. Yoshino, T. P. and T. C. Cheng. (1976). Experimentally induced elevation of aminopeptidase activity in hemolymph cells of the American oyster, Crassostrea virginica. J. Invert. Pathol., 27, 367–370.Google Scholar
  233. Yoshino, T. P. and T. C. Cheng. (1977). Aminopeptidase activity in the hemolymph and body tissues of the pulmonate gastropod Biom-phalaria glabrata. J. Invert. Pathol., 30, 76–79.Google Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • C. R. Fries
    • 1
  1. 1.School of Life and Health SciencesUniversity of DelawareNewarkUSA

Personalised recommendations