The Coelomocytes of Asteroid Echinoderms

  • K. Kanungo
Part of the Comparative Pathobiology book series (CPATH, volume 6)


The cellular elements found in the coelomic fluid of asteroid echinoderms (sea stars or starfishes) have been the subject of numerous studies for almost a century. These cells, of which there are several types (Table 1), are collectively referred to as coelomo-cytes or coelomic corpuscles. They play diverse functional roles in the organism. The functions of these coelomocytes include: (1) delivery of nutrient materials to different parts of the body (Durham, 1891; Van der Heyde, 1922; Hyman, 1955; Ferguson, 1964a,b); (2) removal of waste materials (Durham, 1891; Cuénot, 1901; Kindred, 1924); (3) phagocytosis (Durham, 1888, 1891; Chapeaux, 1893; Cuénot, 1901; Kindred, 1924; Lison, 1930; Bang and Lemma, 1962; Ghiradella, 1965; Johnson and Beeson, 1966; Reinisch and Bang, 1971; Bang, 1973a); (4) immune responses (Ghiradella, 1965; Brusle, 1967; Reinisch and Bang, 1971; Hildemann and Dix, 1972; Bang, 1973b; Hildemann and Reddy, 1973; Hildemann, 1974; Hildemann et al., 1974; Reinisch, 1974; Bang, 1975; Karp and Hildemann, 1976); (5) clotting and wound healing (Geddes, 1880; Goodrich, 1920; Kindred, 1924; Boolootian and Giese, 1958, 1959; Johnson and Beeson, 1966; Bang, 1970; Jangoux and Vanden Bossche, 1975; Penn, 1979). The sea star coelomocytes contain a potent factor which reacts with vertebrate immune systems has been reported by Prendergast and Suzuki (1970), Prendergast et al. (1974), Willenborg and Prendergast (1974), and Prendergast and Liu (1976). That these cells may act in cooperation with the axial organ cells in promoting angiogenesis in vertebrates has also been implied (Leclerc et al., 1977).


Coelomic Fluid Bladder Cell Coelomic Cavity Live Preparation Amoeboid Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrew, W. (1962). Cells of the blood and coelomic fluids of tunicates and echinoderms. Am. Zool., 2, 285–297.Google Scholar
  2. Andrew, W. (1965). “Comparative Hematology”. Grune & Stratton, New York.Google Scholar
  3. Bang, F. B. (1961). Reaction to injury in the oyster (Crassostrea virginica). Biol. Bull., 121, 57–68.CrossRefGoogle Scholar
  4. Bang, F. B. (1970). Cellular aspects of blood clotting in the sea star and the hermit crab. J. Reticuloendoth. Soc., 7, 161–172.Google Scholar
  5. Bang, F. B. (1973a). A survey of phagocytosis as a protective mechanism against disease among invertebrates. In: “Nonspecific Factors Influencing Host Resistance,” (W. Braun and J. Unger, eds.), pp. 2–10. Karger, Basel.Google Scholar
  6. Bang, F. B. (1973b). Immune reactions among marine and other invertebrates. Bioscience, 23, 584–589.CrossRefGoogle Scholar
  7. Bang, F. B. (1975). Phagocytosis in invertebrates. In: “Invertebrate Immmunity,” (K. Maramorosch and R. E. Shope, eds.), pp. 137–151. Academic Press, New York and London.Google Scholar
  8. Bang, F. B. and Lemma, A. (1962). Bacterial infection and reaction to injury in some echinoderms. J. Insect Pathol., 4, 401–414.Google Scholar
  9. Belamarich, F. A. (1976). Hemostasis in animals other than mammals: The role of cells. In: “Progress in Hemostasis and Thrombosis,” (T. H. Spaet, ed.), volume 3, pp. 191–209. Grune & Stratton, New York.Google Scholar
  10. Berridge, M. J. (1975). The interaction of cyclic nucleotides and calcium in the control of cellular activity. In: “Advances in Cyclic Nucleotide Research,” (P. Greengard and G. A. Robison, eds.), Vol. 6, pp. 1–98. Raven Press, New York.Google Scholar
  11. Bertheussen, K. and Seljelid, R. (1978). Echinoid phagocytes in vitro. Exp. Cell Res., 111, 401–412.PubMedCrossRefGoogle Scholar
  12. Binyon, J. (1972). “Physiology of Echinoderms”. Pergamon Press, Oxford, New York.Google Scholar
  13. Bookhout, C. G. and Greenburg, N. D. (1940). Cell types and clotting reaction in the echinoid, Mellita quinquiesperforata. Biol. Bull., 79, 309–320.CrossRefGoogle Scholar
  14. Boolootian, R. A. (1962). The perivisceral elements of echinoderm body fluids. Amer. Zool., 2, 275–284.Google Scholar
  15. Boolootian, R. A. and Giese, A. C. (1958). Coelomic corpuscles of echinoderms. Biol. Bull., 115, 53–63.CrossRefGoogle Scholar
  16. Boolootian, R. A. and Giese, A. C. (1959). Clotting of echinoderm coelomic fluid. J. Exp. Zool., 140, 207–229.PubMedCrossRefGoogle Scholar
  17. Brusle, J. (1967). Homogreffes et heterogreffes reciproques du tegument et ses gonades chez Asterina gibbosaet Asterina pan-cerri. Cahiers Biol. Mar., 8, 417–420.Google Scholar
  18. Cameron, G. R. (1932). Inflammation in earthworms. J. Path. Bact., 35, 933–972.CrossRefGoogle Scholar
  19. Caratero, C, Fontana, A. and Legal, J. (1968). Etude comparee du milieu interieur de quelques especes d’echinides et d’asteries. Bull. Soc. Hist. Nat. Toulouse, 104, 263–275.Google Scholar
  20. Chapeaux, M. (1893). Sur la nutrition des Echinodermes. Bull. Acad. Belg. Cl. Sci., Ser. 3, 26, 227–232.Google Scholar
  21. Cheney, D. P. (1971). A summary of invertebrate leucocyte morphology with emphasis on blood elements of the manila clam, Tapes semidecussata. Biol. Bull., 140, 353–368.PubMedCrossRefGoogle Scholar
  22. Chien, P. K., Johnson, P. T., Holland, N. D., and Chapman, F. A. (1970). The coelomic elements of sea urchins (Strongylocentro-tus). IV. Ultrastructure of the coelomocytes. Protoplasma, 71, 419–442.CrossRefGoogle Scholar
  23. Crossley, A. C. (1975). The cytophysiology of insect blood. In: “Advances in Insect Physiology,” (J.E. Treherne, M. J. Berridge, and V. B. Wigglesworth, eds.), Vol. 11, pp. 117–221. Academic Press, New York and London.Google Scholar
  24. Cuénot, L. (1887). Contribution on a l’étude anatomique des aster-ides. Arch. Zool. Exp. Gén., 5, 1–144.Google Scholar
  25. Cuénot, L. (1891). Etude sur le sang et les glandes lymphatiques dans la serie animale (2eme partie: invertebres). Arch. Zool. Exp. Gen., 9, 593–670.Google Scholar
  26. Cuénot, L. (1901). Etude physiologiques sur les asteries. Arch. Zool. Exp. Gen., Ser. 3., 9, 233–259.Google Scholar
  27. Cuénot, L. (1906). Role biologique de la coagulation du liquide coelomique des oursins. C. R. Seanc. Soc. Biol., Paris, 61, 255–256.Google Scholar
  28. Dales, R. P. (1978). Defence mechanisms. In: “Physiology of Annelids,” (P. J. Mill, ed.), pp. 479–507. Academic Press, New York and London.Google Scholar
  29. Deykin, D. (1974). Emerging concepts of platelet function. New Eng. J. Med., 290, 144–157.PubMedCrossRefGoogle Scholar
  30. Donnellon, J. A. (1938). An experimental study of clot formation in the perivisceral fluid of Arbacia. Physiol. Zool., 11, 389–397.Google Scholar
  31. Durham, H. E. (1888). The emigration of amoeboid corpuscles in the star-fish. Proc. Roy. Soc, B., 43, 327–330.Google Scholar
  32. Durham, H. E. (1891). On wandering cells in echinoderms, etc., more especially with regard to excretory functions. Quart. J. Micros. Sci., 33, 82–121.Google Scholar
  33. Endean, R. (1966). The coelomocytes and coelomic fluids. In: “Physiology of Echinodermata,” (R. A. Boolootian, ed.), pp. 301–328. Interscience, New York.Google Scholar
  34. Fauré-Fremiet, E. (1927). Les amibocytes des invertebres a l’état quiescent et a l’état actif. Arch. Anat. Microsc, 23, 99–173.Google Scholar
  35. Fauré-Fremiet, E. (1929). Caracteres physico-chimiques des choano-leucocytes de quelques invertebres. Protoplasma, 6, 521–609.CrossRefGoogle Scholar
  36. Ferguson, J. C. (1964a). Nutrient transport in starfish. I. Properties of the coelomic fluid. Biol. Bull., 126, 33–53.CrossRefGoogle Scholar
  37. Ferguson, J. C. (1964b). Nutrient transport in starfish. II. Uptake of nutrients by isolated organs. Biol. Bull., 126, 391–406.CrossRefGoogle Scholar
  38. Fontaine, A. R. and Lambert, P. (1977). The fine structure of the leucocytes of the holothurian, Cucumaria miniata. Can. J. Zool., 55, 1530–1544.PubMedCrossRefGoogle Scholar
  39. Geddes, P. (1880). On the coalescence of amoeboid cells into plasmodia, and on the so-called coagulation of invertebrate fluids. Proc. Roy. Soc., B, 30, 252–255.Google Scholar
  40. Ghiradella, H. T. (1965). The reaction of two starfishes, Patiria miniataand Asterias forbesi, to foreign tissue in coelom. Biol. Bull., 128, 77–89.CrossRefGoogle Scholar
  41. Goodrich, G.S. (1920). The pseudopodia of the leucocytes of invertebrates. Quart. J. Micrsc. Sci., 64, 19–26.Google Scholar
  42. Gregoire, C. (1971). Haemolymph coagulation in arthropods. In: “Chemical Zoology,” (M. Florkin, ed.), Vol. 6, pp. 145–186. Academic Press, New York and London.Google Scholar
  43. Gregoire, C. and Tagnon, H. J. (1962). Blood coagulation. In: “Comparative Biochemistry,” (M. Florkin and H.S. Mason, eds.), Vol. 4, pp. 435–482. Academic Press, New York and London.Google Scholar
  44. Griffiths, A. B. (1892). On the blood of the Invertebrata. Proc. Roy. Soc. Edinb., 19, 116–130.Google Scholar
  45. Hetzel, H. R. (1963). Studies on holothurian coeloraocytes. I. A survey of coelomocyte types. Biol. Bull., 125, 289–301.CrossRefGoogle Scholar
  46. Hildemann, W. H. (1974). Phylogeny of immune responsiveness in invertebrates. Life Sci., 14, 605–614.PubMedCrossRefGoogle Scholar
  47. Hildemann, W. H. and Dix, T. G. (1972). Transplantation reactions of tropical Australian echinoderms. Transplantation, 15, 624–633.CrossRefGoogle Scholar
  48. Hildemann, W. H., Dix, T. G., and Collins, J. D. (1974). Tissue transplantation in diverse marine invertebrates. In: “Contemporary Topics in Immunobiology,” (E. L. Cooper, ed.), Vol. 4, pp. 141–150. Plenum Press, New York.CrossRefGoogle Scholar
  49. Hildemann, W. H. and Reddy, A. L. (1973). Phylogeny of immune responsiveness: marine invertebrates. Fed. Proc., 32, 2188–2194.PubMedGoogle Scholar
  50. Hyman, L. H. (1955). “The Invertebrates. Vol. IV. Echinodermata. The Coelomate Bilateria.” McGraw-Hill, New York.Google Scholar
  51. Jangoux, M. and Vanden Bossche, J. P. (1975). Morphologie et dynaraique des coeloraocytes d’Asterias rubensL. (Echinodermata, Asteroidea). Forma Functio, 8, 191–208.Google Scholar
  52. Johnson, P. T. (1969a). The coelomic elements of sea urchins (Strongylocentrotus). I. The normal coeloraocytes; their morphology and dynamics in hanging drops. J. Invertebr. Pathol., 13, 24–41.Google Scholar
  53. Johnson, P. T. (1969b). The coelomic elements of sea urchins (Strongylocentrotus).II. Cytochemistry of the coelomocytes. Histochemie, 17, 213–231.PubMedCrossRefGoogle Scholar
  54. Johnson, P. T. (1969c). The coelomic elements of sea urchins. III. In vitro reaction to bacteria. J. Exp. Pathol., 13, 42–62.Google Scholar
  55. Johnson, P. T. and Beeson, R. J. (1966). In vitro studies on Patiria miniata (Brandt) coelomocytes, with remarks on revolving cysts. Life Sci., 5, 1641–1666.PubMedCrossRefGoogle Scholar
  56. Johnson, P. T., Chien, P. K., and Chapman, F. A. (1970). The coeloraic elements of sea urchins (Strongylocentrotus). V. Ultrastructure of leukocytes exposed to bacteria. J. Invertebr. Pathol., 16, 466–469.PubMedCrossRefGoogle Scholar
  57. Karp, R. D. and Hildemann, W. H. (1976). Specific allograft reactivity in the sea star Dermasterias imbricata. Transplantation, 22, 434–439.PubMedCrossRefGoogle Scholar
  58. Kindred, J. E. (1924). The cellular elements in the perivisceral fluid of echinoderms. Biol. Bull., 46, 228–251.CrossRefGoogle Scholar
  59. Kollman, M. (1908). Recherches sur les leucocytes et les tissue lymphoide des invertebres. Ann. Sci. Nat. (B), Ser. 9, 8, 1–240.Google Scholar
  60. Leclerc, M., Redziniak, G., Panijel, J., and El Lababidi, M. (1977). Reactions induced in vertebrates by invertebrate cell suspensions. II. Non-adherent axial organ cells as effector cells. Dev. Comp. Immunol., 1, 311–320.PubMedCrossRefGoogle Scholar
  61. Liebman, E. (1950). The leucocytes of Arbacia punctulata. Biol. Bull., 98, 46–59.PubMedCrossRefGoogle Scholar
  62. Lison, L. (1930). Recherches histophysiologiques sur les amibo-cytes des echinodermes. Arch. Biol., 40, 175–203.Google Scholar
  63. Macfarlane, R. G. (1976). Haemostasis. Human blood coagulation. In: “Haemostasis and Thrombosis,” (R. Biggs, ed.), pp. 608–654. Blackwell, Oxford.Google Scholar
  64. Marcus, A. J. and Zucker, M. B. (1965). “The Physiology of Blood Platelets”. Grune & Stratton, New York.Google Scholar
  65. Mason, R. G. and Saba, H. I. (1978). Normal and abnormal hemostasis — An integrated view. Amer. J. Pathol., 92, 744–807.Google Scholar
  66. Massini, P. (1977). The role of calcium in the stimulation of platelets. In: “Platelets and Thrombosis,” (D. C. B. Mills and F. I. Pareti, eds.), Proc. Serono Symp. Vol. 10, pp. 33–43. Academic Press, New York.Google Scholar
  67. Mills, D. C. B. (1977). Platelet aggregation and the adenylate cyclase system. In: “Platelets and Thrombosis,” (D. C. B. Mills and F. I. Pareti, eds.), Proc. Serono Symp., Vol. 10, pp. 63–70. Academic Press, New York and London.Google Scholar
  68. Needham, A. E. (1970). Haemostatic mechanisms in the Invertebrata. Symp. Zool. Soc. Lond., 27, 19–44.Google Scholar
  69. Ohuye, T. (1939). On corpuscles in the body fluids of some invertebrates. General considerations on the results obtained by the preceeding investigation. Sci. Rep. Tohoku Univ., Biol., 13, 359–380.Google Scholar
  70. Penn, P. E. (1979). Wound healing in the tropical intertidal asteroid, Nepanthia belcheri(Perrier). Amer. Zool., 19, 1006.Google Scholar
  71. Prendergast, R. A., Cole, G. A., and Henney, C. S. (1974). Marine invertebrate origin of a reactant to mammalian T cells. Ann. N.Y. Acad. Sci., 234., 7–17.PubMedCrossRefGoogle Scholar
  72. Prendergast, R. A. and Liu, S. H. (1976). Isolation and characterization of sea star factor. Scand. J. Immunol., 5, 873–880.PubMedCrossRefGoogle Scholar
  73. Prendergast, R. A. and Suzuki, M. (1970). Invertebrate protein simulating mediators of delayed hypersensitivity. Nature, 227, 277–279.PubMedCrossRefGoogle Scholar
  74. Prosser, C. L. and Brown, F. A. (1961). “Comparative Animal Physiology”. W. B. Saunders, Philadelphia.Google Scholar
  75. Rasmussen, H. (1970). Cell communication, calcium ion, and cylic adenosine monophosphate. Science, 170, 404–412.PubMedCrossRefGoogle Scholar
  76. Reinisch, C. L. (1974). Phylogenetic origin of xenogenic recognition. Nature, 250, 344–350.CrossRefGoogle Scholar
  77. Reinisch, C. L., and Bang, F. B. (1971). Cell recognition: Reactions of the sea star (Asterias vulgaris) to the injection of amoebocytes of Sea urchin (Arbacia punctulata). Cell. Immunol., 2, 496–503.PubMedCrossRefGoogle Scholar
  78. Stang-Voss, C. (1974). On the ultrastructure of invertebrate hemo-cytes: An interpretation of their role in comparative hemato-logy. In: “Contemporary Topics in Immunobiology,” (E. L. Cooper, ed.), Vol. 4, pp. 65–76. Plenum, New York.CrossRefGoogle Scholar
  79. Tait, J. and Gunn, J. D. (1918). The blood of Astacus fluviatilis: a study of crustacean blood with special reference to coagulation and phagocytosis. Quart. J. Exp. Physiol., 12, 35–80.Google Scholar
  80. Theel, H. (1919). Om amoebycyteroch andra kroppar i. perivisceral-halan hos echinodermer. I. Asterias rubens. Ark. Zool. Stockholm, 12, 1–38.Google Scholar
  81. Van der Heyde, H. C. (1922). On the physiology of digestion, respiration, and excretion in echinoderms. C. de Boer, den Helder., 30-35.Google Scholar
  82. Vethamany, V. G. and Fung, M. (1972). The fine structure of coelo-mocytes of the sea urchin, Strongylocentrotus drobachiensis(Muller, O. F.). Can. J. Zool., 50, 77–81.CrossRefGoogle Scholar
  83. Vostal, Z. (1971). Phylogenese lymphatischer zellen der Urmunder-Protostomia. Biologia (Bratislava), 26, 805–810.Google Scholar
  84. Willenborg, D. O. and Prendergast, R. A. (1974). The effects of sea star coelomocyte extract on cell-mediated resistance to Lister-ia monocytogenes in mice. J. Exp. Med., 139, 820–833.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • K. Kanungo
    • 1
  1. 1.Department of Biological and Environmental SciencesWestern Connecticut State UniversityDanburyUSA

Personalised recommendations