Skip to main content

The Coelomocytes of Asteroid Echinoderms

  • Chapter
Invertebrate Blood

Part of the book series: Comparative Pathobiology ((CPATH,volume 6))

Abstract

The cellular elements found in the coelomic fluid of asteroid echinoderms (sea stars or starfishes) have been the subject of numerous studies for almost a century. These cells, of which there are several types (Table 1), are collectively referred to as coelomo-cytes or coelomic corpuscles. They play diverse functional roles in the organism. The functions of these coelomocytes include: (1) delivery of nutrient materials to different parts of the body (Durham, 1891; Van der Heyde, 1922; Hyman, 1955; Ferguson, 1964a,b); (2) removal of waste materials (Durham, 1891; Cuénot, 1901; Kindred, 1924); (3) phagocytosis (Durham, 1888, 1891; Chapeaux, 1893; Cuénot, 1901; Kindred, 1924; Lison, 1930; Bang and Lemma, 1962; Ghiradella, 1965; Johnson and Beeson, 1966; Reinisch and Bang, 1971; Bang, 1973a); (4) immune responses (Ghiradella, 1965; Brusle, 1967; Reinisch and Bang, 1971; Hildemann and Dix, 1972; Bang, 1973b; Hildemann and Reddy, 1973; Hildemann, 1974; Hildemann et al., 1974; Reinisch, 1974; Bang, 1975; Karp and Hildemann, 1976); (5) clotting and wound healing (Geddes, 1880; Goodrich, 1920; Kindred, 1924; Boolootian and Giese, 1958, 1959; Johnson and Beeson, 1966; Bang, 1970; Jangoux and Vanden Bossche, 1975; Penn, 1979). The sea star coelomocytes contain a potent factor which reacts with vertebrate immune systems has been reported by Prendergast and Suzuki (1970), Prendergast et al. (1974), Willenborg and Prendergast (1974), and Prendergast and Liu (1976). That these cells may act in cooperation with the axial organ cells in promoting angiogenesis in vertebrates has also been implied (Leclerc et al., 1977).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrew, W. (1962). Cells of the blood and coelomic fluids of tunicates and echinoderms. Am. Zool., 2, 285–297.

    Google Scholar 

  • Andrew, W. (1965). “Comparative Hematology”. Grune & Stratton, New York.

    Google Scholar 

  • Bang, F. B. (1961). Reaction to injury in the oyster (Crassostrea virginica). Biol. Bull., 121, 57–68.

    Article  Google Scholar 

  • Bang, F. B. (1970). Cellular aspects of blood clotting in the sea star and the hermit crab. J. Reticuloendoth. Soc., 7, 161–172.

    CAS  Google Scholar 

  • Bang, F. B. (1973a). A survey of phagocytosis as a protective mechanism against disease among invertebrates. In: “Nonspecific Factors Influencing Host Resistance,” (W. Braun and J. Unger, eds.), pp. 2–10. Karger, Basel.

    Google Scholar 

  • Bang, F. B. (1973b). Immune reactions among marine and other invertebrates. Bioscience, 23, 584–589.

    Article  Google Scholar 

  • Bang, F. B. (1975). Phagocytosis in invertebrates. In: “Invertebrate Immmunity,” (K. Maramorosch and R. E. Shope, eds.), pp. 137–151. Academic Press, New York and London.

    Google Scholar 

  • Bang, F. B. and Lemma, A. (1962). Bacterial infection and reaction to injury in some echinoderms. J. Insect Pathol., 4, 401–414.

    Google Scholar 

  • Belamarich, F. A. (1976). Hemostasis in animals other than mammals: The role of cells. In: “Progress in Hemostasis and Thrombosis,” (T. H. Spaet, ed.), volume 3, pp. 191–209. Grune & Stratton, New York.

    Google Scholar 

  • Berridge, M. J. (1975). The interaction of cyclic nucleotides and calcium in the control of cellular activity. In: “Advances in Cyclic Nucleotide Research,” (P. Greengard and G. A. Robison, eds.), Vol. 6, pp. 1–98. Raven Press, New York.

    Google Scholar 

  • Bertheussen, K. and Seljelid, R. (1978). Echinoid phagocytes in vitro. Exp. Cell Res., 111, 401–412.

    Article  PubMed  CAS  Google Scholar 

  • Binyon, J. (1972). “Physiology of Echinoderms”. Pergamon Press, Oxford, New York.

    Google Scholar 

  • Bookhout, C. G. and Greenburg, N. D. (1940). Cell types and clotting reaction in the echinoid, Mellita quinquiesperforata. Biol. Bull., 79, 309–320.

    Article  Google Scholar 

  • Boolootian, R. A. (1962). The perivisceral elements of echinoderm body fluids. Amer. Zool., 2, 275–284.

    Google Scholar 

  • Boolootian, R. A. and Giese, A. C. (1958). Coelomic corpuscles of echinoderms. Biol. Bull., 115, 53–63.

    Article  Google Scholar 

  • Boolootian, R. A. and Giese, A. C. (1959). Clotting of echinoderm coelomic fluid. J. Exp. Zool., 140, 207–229.

    Article  PubMed  CAS  Google Scholar 

  • Brusle, J. (1967). Homogreffes et heterogreffes reciproques du tegument et ses gonades chez Asterina gibbosaet Asterina pan-cerri. Cahiers Biol. Mar., 8, 417–420.

    Google Scholar 

  • Cameron, G. R. (1932). Inflammation in earthworms. J. Path. Bact., 35, 933–972.

    Article  Google Scholar 

  • Caratero, C, Fontana, A. and Legal, J. (1968). Etude comparee du milieu interieur de quelques especes d’echinides et d’asteries. Bull. Soc. Hist. Nat. Toulouse, 104, 263–275.

    Google Scholar 

  • Chapeaux, M. (1893). Sur la nutrition des Echinodermes. Bull. Acad. Belg. Cl. Sci., Ser. 3, 26, 227–232.

    Google Scholar 

  • Cheney, D. P. (1971). A summary of invertebrate leucocyte morphology with emphasis on blood elements of the manila clam, Tapes semidecussata. Biol. Bull., 140, 353–368.

    Article  PubMed  CAS  Google Scholar 

  • Chien, P. K., Johnson, P. T., Holland, N. D., and Chapman, F. A. (1970). The coelomic elements of sea urchins (Strongylocentro-tus). IV. Ultrastructure of the coelomocytes. Protoplasma, 71, 419–442.

    Article  Google Scholar 

  • Crossley, A. C. (1975). The cytophysiology of insect blood. In: “Advances in Insect Physiology,” (J.E. Treherne, M. J. Berridge, and V. B. Wigglesworth, eds.), Vol. 11, pp. 117–221. Academic Press, New York and London.

    Google Scholar 

  • Cuénot, L. (1887). Contribution on a l’étude anatomique des aster-ides. Arch. Zool. Exp. Gén., 5, 1–144.

    Google Scholar 

  • Cuénot, L. (1891). Etude sur le sang et les glandes lymphatiques dans la serie animale (2eme partie: invertebres). Arch. Zool. Exp. Gen., 9, 593–670.

    Google Scholar 

  • Cuénot, L. (1901). Etude physiologiques sur les asteries. Arch. Zool. Exp. Gen., Ser. 3., 9, 233–259.

    Google Scholar 

  • Cuénot, L. (1906). Role biologique de la coagulation du liquide coelomique des oursins. C. R. Seanc. Soc. Biol., Paris, 61, 255–256.

    Google Scholar 

  • Dales, R. P. (1978). Defence mechanisms. In: “Physiology of Annelids,” (P. J. Mill, ed.), pp. 479–507. Academic Press, New York and London.

    Google Scholar 

  • Deykin, D. (1974). Emerging concepts of platelet function. New Eng. J. Med., 290, 144–157.

    Article  PubMed  CAS  Google Scholar 

  • Donnellon, J. A. (1938). An experimental study of clot formation in the perivisceral fluid of Arbacia. Physiol. Zool., 11, 389–397.

    Google Scholar 

  • Durham, H. E. (1888). The emigration of amoeboid corpuscles in the star-fish. Proc. Roy. Soc, B., 43, 327–330.

    Google Scholar 

  • Durham, H. E. (1891). On wandering cells in echinoderms, etc., more especially with regard to excretory functions. Quart. J. Micros. Sci., 33, 82–121.

    Google Scholar 

  • Endean, R. (1966). The coelomocytes and coelomic fluids. In: “Physiology of Echinodermata,” (R. A. Boolootian, ed.), pp. 301–328. Interscience, New York.

    Google Scholar 

  • Fauré-Fremiet, E. (1927). Les amibocytes des invertebres a l’état quiescent et a l’état actif. Arch. Anat. Microsc, 23, 99–173.

    Google Scholar 

  • Fauré-Fremiet, E. (1929). Caracteres physico-chimiques des choano-leucocytes de quelques invertebres. Protoplasma, 6, 521–609.

    Article  Google Scholar 

  • Ferguson, J. C. (1964a). Nutrient transport in starfish. I. Properties of the coelomic fluid. Biol. Bull., 126, 33–53.

    Article  Google Scholar 

  • Ferguson, J. C. (1964b). Nutrient transport in starfish. II. Uptake of nutrients by isolated organs. Biol. Bull., 126, 391–406.

    Article  Google Scholar 

  • Fontaine, A. R. and Lambert, P. (1977). The fine structure of the leucocytes of the holothurian, Cucumaria miniata. Can. J. Zool., 55, 1530–1544.

    Article  PubMed  CAS  Google Scholar 

  • Geddes, P. (1880). On the coalescence of amoeboid cells into plasmodia, and on the so-called coagulation of invertebrate fluids. Proc. Roy. Soc., B, 30, 252–255.

    Google Scholar 

  • Ghiradella, H. T. (1965). The reaction of two starfishes, Patiria miniataand Asterias forbesi, to foreign tissue in coelom. Biol. Bull., 128, 77–89.

    Article  Google Scholar 

  • Goodrich, G.S. (1920). The pseudopodia of the leucocytes of invertebrates. Quart. J. Micrsc. Sci., 64, 19–26.

    Google Scholar 

  • Gregoire, C. (1971). Haemolymph coagulation in arthropods. In: “Chemical Zoology,” (M. Florkin, ed.), Vol. 6, pp. 145–186. Academic Press, New York and London.

    Google Scholar 

  • Gregoire, C. and Tagnon, H. J. (1962). Blood coagulation. In: “Comparative Biochemistry,” (M. Florkin and H.S. Mason, eds.), Vol. 4, pp. 435–482. Academic Press, New York and London.

    Google Scholar 

  • Griffiths, A. B. (1892). On the blood of the Invertebrata. Proc. Roy. Soc. Edinb., 19, 116–130.

    Google Scholar 

  • Hetzel, H. R. (1963). Studies on holothurian coeloraocytes. I. A survey of coelomocyte types. Biol. Bull., 125, 289–301.

    Article  Google Scholar 

  • Hildemann, W. H. (1974). Phylogeny of immune responsiveness in invertebrates. Life Sci., 14, 605–614.

    Article  PubMed  CAS  Google Scholar 

  • Hildemann, W. H. and Dix, T. G. (1972). Transplantation reactions of tropical Australian echinoderms. Transplantation, 15, 624–633.

    Article  Google Scholar 

  • Hildemann, W. H., Dix, T. G., and Collins, J. D. (1974). Tissue transplantation in diverse marine invertebrates. In: “Contemporary Topics in Immunobiology,” (E. L. Cooper, ed.), Vol. 4, pp. 141–150. Plenum Press, New York.

    Chapter  Google Scholar 

  • Hildemann, W. H. and Reddy, A. L. (1973). Phylogeny of immune responsiveness: marine invertebrates. Fed. Proc., 32, 2188–2194.

    PubMed  CAS  Google Scholar 

  • Hyman, L. H. (1955). “The Invertebrates. Vol. IV. Echinodermata. The Coelomate Bilateria.” McGraw-Hill, New York.

    Google Scholar 

  • Jangoux, M. and Vanden Bossche, J. P. (1975). Morphologie et dynaraique des coeloraocytes d’Asterias rubensL. (Echinodermata, Asteroidea). Forma Functio, 8, 191–208.

    Google Scholar 

  • Johnson, P. T. (1969a). The coelomic elements of sea urchins (Strongylocentrotus). I. The normal coeloraocytes; their morphology and dynamics in hanging drops. J. Invertebr. Pathol., 13, 24–41.

    Google Scholar 

  • Johnson, P. T. (1969b). The coelomic elements of sea urchins (Strongylocentrotus).II. Cytochemistry of the coelomocytes. Histochemie, 17, 213–231.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, P. T. (1969c). The coelomic elements of sea urchins. III. In vitro reaction to bacteria. J. Exp. Pathol., 13, 42–62.

    CAS  Google Scholar 

  • Johnson, P. T. and Beeson, R. J. (1966). In vitro studies on Patiria miniata (Brandt) coelomocytes, with remarks on revolving cysts. Life Sci., 5, 1641–1666.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, P. T., Chien, P. K., and Chapman, F. A. (1970). The coeloraic elements of sea urchins (Strongylocentrotus). V. Ultrastructure of leukocytes exposed to bacteria. J. Invertebr. Pathol., 16, 466–469.

    Article  PubMed  CAS  Google Scholar 

  • Karp, R. D. and Hildemann, W. H. (1976). Specific allograft reactivity in the sea star Dermasterias imbricata. Transplantation, 22, 434–439.

    Article  PubMed  CAS  Google Scholar 

  • Kindred, J. E. (1924). The cellular elements in the perivisceral fluid of echinoderms. Biol. Bull., 46, 228–251.

    Article  Google Scholar 

  • Kollman, M. (1908). Recherches sur les leucocytes et les tissue lymphoide des invertebres. Ann. Sci. Nat. (B), Ser. 9, 8, 1–240.

    Google Scholar 

  • Leclerc, M., Redziniak, G., Panijel, J., and El Lababidi, M. (1977). Reactions induced in vertebrates by invertebrate cell suspensions. II. Non-adherent axial organ cells as effector cells. Dev. Comp. Immunol., 1, 311–320.

    Article  PubMed  CAS  Google Scholar 

  • Liebman, E. (1950). The leucocytes of Arbacia punctulata. Biol. Bull., 98, 46–59.

    Article  PubMed  CAS  Google Scholar 

  • Lison, L. (1930). Recherches histophysiologiques sur les amibo-cytes des echinodermes. Arch. Biol., 40, 175–203.

    Google Scholar 

  • Macfarlane, R. G. (1976). Haemostasis. Human blood coagulation. In: “Haemostasis and Thrombosis,” (R. Biggs, ed.), pp. 608–654. Blackwell, Oxford.

    Google Scholar 

  • Marcus, A. J. and Zucker, M. B. (1965). “The Physiology of Blood Platelets”. Grune & Stratton, New York.

    Google Scholar 

  • Mason, R. G. and Saba, H. I. (1978). Normal and abnormal hemostasis — An integrated view. Amer. J. Pathol., 92, 744–807.

    Google Scholar 

  • Massini, P. (1977). The role of calcium in the stimulation of platelets. In: “Platelets and Thrombosis,” (D. C. B. Mills and F. I. Pareti, eds.), Proc. Serono Symp. Vol. 10, pp. 33–43. Academic Press, New York.

    Google Scholar 

  • Mills, D. C. B. (1977). Platelet aggregation and the adenylate cyclase system. In: “Platelets and Thrombosis,” (D. C. B. Mills and F. I. Pareti, eds.), Proc. Serono Symp., Vol. 10, pp. 63–70. Academic Press, New York and London.

    Google Scholar 

  • Needham, A. E. (1970). Haemostatic mechanisms in the Invertebrata. Symp. Zool. Soc. Lond., 27, 19–44.

    Google Scholar 

  • Ohuye, T. (1939). On corpuscles in the body fluids of some invertebrates. General considerations on the results obtained by the preceeding investigation. Sci. Rep. Tohoku Univ., Biol., 13, 359–380.

    Google Scholar 

  • Penn, P. E. (1979). Wound healing in the tropical intertidal asteroid, Nepanthia belcheri(Perrier). Amer. Zool., 19, 1006.

    Google Scholar 

  • Prendergast, R. A., Cole, G. A., and Henney, C. S. (1974). Marine invertebrate origin of a reactant to mammalian T cells. Ann. N.Y. Acad. Sci., 234., 7–17.

    Article  PubMed  CAS  Google Scholar 

  • Prendergast, R. A. and Liu, S. H. (1976). Isolation and characterization of sea star factor. Scand. J. Immunol., 5, 873–880.

    Article  PubMed  CAS  Google Scholar 

  • Prendergast, R. A. and Suzuki, M. (1970). Invertebrate protein simulating mediators of delayed hypersensitivity. Nature, 227, 277–279.

    Article  PubMed  CAS  Google Scholar 

  • Prosser, C. L. and Brown, F. A. (1961). “Comparative Animal Physiology”. W. B. Saunders, Philadelphia.

    Google Scholar 

  • Rasmussen, H. (1970). Cell communication, calcium ion, and cylic adenosine monophosphate. Science, 170, 404–412.

    Article  PubMed  CAS  Google Scholar 

  • Reinisch, C. L. (1974). Phylogenetic origin of xenogenic recognition. Nature, 250, 344–350.

    Article  Google Scholar 

  • Reinisch, C. L., and Bang, F. B. (1971). Cell recognition: Reactions of the sea star (Asterias vulgaris) to the injection of amoebocytes of Sea urchin (Arbacia punctulata). Cell. Immunol., 2, 496–503.

    Article  PubMed  CAS  Google Scholar 

  • Stang-Voss, C. (1974). On the ultrastructure of invertebrate hemo-cytes: An interpretation of their role in comparative hemato-logy. In: “Contemporary Topics in Immunobiology,” (E. L. Cooper, ed.), Vol. 4, pp. 65–76. Plenum, New York.

    Chapter  Google Scholar 

  • Tait, J. and Gunn, J. D. (1918). The blood of Astacus fluviatilis: a study of crustacean blood with special reference to coagulation and phagocytosis. Quart. J. Exp. Physiol., 12, 35–80.

    Google Scholar 

  • Theel, H. (1919). Om amoebycyteroch andra kroppar i. perivisceral-halan hos echinodermer. I. Asterias rubens. Ark. Zool. Stockholm, 12, 1–38.

    Google Scholar 

  • Van der Heyde, H. C. (1922). On the physiology of digestion, respiration, and excretion in echinoderms. C. de Boer, den Helder., 30-35.

    Google Scholar 

  • Vethamany, V. G. and Fung, M. (1972). The fine structure of coelo-mocytes of the sea urchin, Strongylocentrotus drobachiensis(Muller, O. F.). Can. J. Zool., 50, 77–81.

    Article  Google Scholar 

  • Vostal, Z. (1971). Phylogenese lymphatischer zellen der Urmunder-Protostomia. Biologia (Bratislava), 26, 805–810.

    Google Scholar 

  • Willenborg, D. O. and Prendergast, R. A. (1974). The effects of sea star coelomocyte extract on cell-mediated resistance to Lister-ia monocytogenes in mice. J. Exp. Med., 139, 820–833.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kanungo, K. (1984). The Coelomocytes of Asteroid Echinoderms. In: Cheng, T.C. (eds) Invertebrate Blood. Comparative Pathobiology, vol 6. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4766-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4766-8_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4768-2

  • Online ISBN: 978-1-4684-4766-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics