Advertisement

A New Perspective of Several Approaches to Clay/Electrolyte Studies

  • V. W. Truesdale
  • C. Neal
  • A. G. Thomas

Abstract

Cohesive sediment behaviour is, in part, determined by physico-chemical interactions between clay and the accompanying electrolyte solution (Hatch and Rastall, 1965). For example, the rheological properties of a clay can change markedly when the electrolyte in equilibrium with the clay is changed from one containing monovalent cations to one containing divalent cations. It is important, therefore, that knowledge of the chemistry of clay/electroylte interactions be readily available to workers in a number of diverse fields where sediment behaviour is important.

Keywords

Cation Exchange Capacity Interfacial Region Bulk Solution Surface Excess Reference Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avery, B.W. and Bascomb, C.L., 1974. “Soil Survey Tech. Mono.” No. 6, Harpenden.Google Scholar
  2. Babcock, K.L. 1963. Theory of the chemical properties of soil colloidal systems at equilibrium, Hilgardia 34:417.Google Scholar
  3. Bard, Y., 1971. “Non-linear Parameter Estimation”, Academic Press, New York.Google Scholar
  4. Berner, R. A., 1971. “Principles of Chemical Sedimentology”, McGraw-Hill, New York.Google Scholar
  5. Van Bladel, R. and Laudelout, H., 1967. Apparent irreversibility of ion exchange reactions in clay suspensions, Soil Sci. 104: 134.CrossRefGoogle Scholar
  6. Bolt, G. H., 1955. Analysis of the validity of the Gouy-Chapman theory of the electric double layer, J. Colloid Sci. 10:206.CrossRefGoogle Scholar
  7. Bolt, G. H., 1967. Cation-exchange equations used in soil science — A review, Neth. J. Agric. Sci. 15:81.Google Scholar
  8. Bolt, G. H. and Bruggenwert, G. M., 1976. “Soil Chemistry. A. Basic Elements”, Elsevier, Amsterdam.Google Scholar
  9. Bower, C. A., Reitemeier, R. F. and Firman, M., 1952. Exchangeable cation analysis of saline and alkaline soils, Soil Sci. 73: 251.CrossRefGoogle Scholar
  10. Chapman, D. L., 1913. A contribution to the theory of electro-capillarity, Phil. Mag. 25:475.Google Scholar
  11. Chapman, H. D., 1965. Cation exchange capacity, in: “Methods of Soil Analysis” Black, C. A., Evans, D. D., Ensminger, L. L., White, J. L. and Clark, F. E., eds., Amer. Soc. Agronomy, USA.Google Scholar
  12. Davis, L. E., 1942. Significance of Donnan equilibrium for soil colloid systems, Soil Sci. 54:199.CrossRefGoogle Scholar
  13. Davis, L. E., 1945. Theories of base-exchange equilibriums, Soil Sci. 59:379.CrossRefGoogle Scholar
  14. Devine, S. B., Ferrell, R. E. and Billings, G. K., 1973. The significance of ion exchange to interstitial solutions in clayey sediments, Chemical Geolpgy 12:219.CrossRefGoogle Scholar
  15. Dewis, J. and Freitas, F., 1970. “Physical and Chemical Methods of Soil and Water Analysis”, FAO, Rome.Google Scholar
  16. “Dictionary of Science and Technology”, 1974, Chambers, UK.Google Scholar
  17. Donnan, F. G., 1935. Molar (micellar) mass, electrovalency of ions and osmotic pressure of colloidal electrolytes, Trans. Faraday Soc. 31:80 (1935).Google Scholar
  18. Gast, R. G., 1977. Surface and colloid chemistry, in: “Minerals in Soil Environments”, Dixon, J. B. and Weed, S. B. eds., Soil Sci. Amer., Wisconsin.Google Scholar
  19. Glasstone, S., 1962. “Textbook of Physical Chemistry”, 2nd edition. Macmillan, London.Google Scholar
  20. Gouy, G., 1910. Sur la constitution de la charge electrique à la surface d’un electrolyte, J. Physique 9: 457.Google Scholar
  21. Hatch, F. H. and Rastall, R. H., Revised by Greensmith, J. J-, 1965. “The Petrology of the Sedimentary Rocks”. Allen, London.Google Scholar
  22. Helmholtz, O., 1879. Studien über Electrische Grenzschichten, Annal. Physik under Chemie 7: 337.Google Scholar
  23. Helmy, A. K., 1963. On cation-exchange stoichiometry, Soil Sci. 95: 204.CrossRefGoogle Scholar
  24. Hesse, P. R., 1971. “A Textbook of Soil Chemical Analysis”, Murray, London.Google Scholar
  25. Isaac, R. A. and Kerber, J. D., 1971. Atomic absorption and flame photometry; Techniques and uses in soil, plant and water analysis, in “Instrumental Methods for Analysis of Soils and Plant Tissue”, I. M. Walsh, ed., Soil Sci. Soc. Amer., Wisconsin.Google Scholar
  26. Kelley, W. P., 1948. “Cation Exchange in Soils”, Reinhold, New York.Google Scholar
  27. Kruyt, H. R., 1952. “Colloid Science” Vol.1, Elsevier, Amsterdam.Google Scholar
  28. Laudelout, H., 1965. A unified treatment of two ion exchange formulations commonly used in soil science, in: “Technical Reports Series”, No. 48:20–24, International Atomic Energy Agency, Vienna.Google Scholar
  29. Laudelout, H., Van Bladel, R., Gilbert, M. and Cremers, A., 1968. Physical chemistry of cation exchange in clays, 9th Int. Congr. Soil Sci. Trans. 565.Google Scholar
  30. Laudelout, H., Van Bladel, R., Bolt, G. H. and Page, A. L., 1968. Thermodynamics of heterovalent cation exchange reactions in a montmorillonite clay, Trans. Faraday Soc. 64:477.CrossRefGoogle Scholar
  31. Marshall, C. E., 1964. “The Physical Chemistry and Mineralogy of Soils”, Wiley, New York.Google Scholar
  32. Moore, W. J., 1974. “Physical Chemistry”, Longmans, USA.Google Scholar
  33. Murthy, A. S. P. and Ferrell, R. E. 1972. Comparative chemical composition of sediment intersititial waters, Clays and Clay Minerals 20:317.CrossRefGoogle Scholar
  34. Neal, C. 1977. The determination of adsorbed Na, K, Mg and Ca on sediments containing CaCO and MgCO, Clays and Clay minerals 25:253.CrossRefGoogle Scholar
  35. Neal, C., Thomas, A. G. and Truesdale, V. W., 1982. The thermodynamic characterisation of clay electrolyte systems, Clays and Clay Minerals 30:291.CrossRefGoogle Scholar
  36. van Olphen, H., 1977. “An Introduction to Clay Colloid Chemistry”, 2nd edition, Wiley, New York.Google Scholar
  37. Overbeek, J. Th. G., 1956. The Donnan Equilibrium, Prog. Biophys. 6:58.Google Scholar
  38. Overbeek, J. Th. G., and Lijklema, J., 1959.,- Electric potentials in colloid systems, in: “Electrophoresis”, M. Bier, ed. Academic Press, New York.Google Scholar
  39. Posner, A. M. and Quirk, J. P., 1964. The adsorption of water from concentrated electrolyte solutions by montmorillonite and illite, Proc. Roy. Soc. 278:35.CrossRefGoogle Scholar
  40. Reitemeier, R. F., 1946. Effect of moisture content on the dissolved and exchangeable ions of soils of arid regions, Soil Sci. 61:195.CrossRefGoogle Scholar
  41. Russell, K. L., 1970. Geochemistry and halmyrolysis of clay minerals, Rio Ameca, Mexico, Geochim. Cosmochim. Acta 34:893CrossRefGoogle Scholar
  42. Schofield, R. K. and Talibuddin, O., 1948. Measurement of internal surface by negative adsorption, Discussion Faraday Soc. 3:51.CrossRefGoogle Scholar
  43. Thomas, H. C., 1965, Toward a connection between ionic equilibrium and ionic migration in clay gels, in: “Technical Reports Series”, No. 48: 4–19, International Energy Agency, Vienna.Google Scholar
  44. Thomas, A. G., Truesdale, V. W. and Neal, C. The heterogeneous distribution of anions and water around a clay surface with special reference to estuarine systems. This volume, page 17. US Dept. Agric, 1969. “Agricultural Handbook No. 60”.Google Scholar
  45. White, R. E., 1979. “Introduction to the Principles and Practice of Soil Science”, Blackwells, Oxford.Google Scholar
  46. Wiklander, L., 1964. Cation and anion exchange phenomena, in: “Chemistry of the Soil”, F. T. Bear, ed., Reinhold, Holland.Google Scholar
  47. Willard, H. H., Merritt, L. L. and Dean, D. A., 1965. “Instrumental Methods of Analysis”, Van Nostrand, USA.Google Scholar
  48. Yong, R. N. and Warkentin, B. P., 1966; “Introduction to Soil Behaviour” Macmillan, New York.Google Scholar
  49. Zaytseva, E. D., 1962. Exchangeable cations in sediments of the Black Sea, Tr. Inst. Okeanol. 54:48.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • V. W. Truesdale
    • 1
  • C. Neal
    • 1
  • A. G. Thomas
    • 1
  1. 1.Institute of HydrologyWallingford, OxonUK

Personalised recommendations