In Vitro Modulation of Epstein-Barr Virus-Carrying Lymphoblastoid Cell Lines

  • Jaroslav Roubal
  • Emma Anisimová
  • Kateřina Prachová


The B-lymphocytes are natural target cells for Epstein-Barr virus (EBV) infection. In vivo they may be infected after clinically inapparent entry of the virus into a child or in teen-age children and young adults. Infectious mononucleosis (IM) results in 50% of cases (32,70). The infected lymphocytes are immortalized, transformed into lymphoblasts and a few cells persist in the infected individuals for life (22). They contain, as a rule, multiple copies of the viral genome (3) and express an EBV-determined DNA-binding nuclear-associated antigen (EBNA) (52,72).


Lymphoblastoid Cell Line Raji Cell Insulin Binding Infectious Mononucleosis Human Lymphoblastoid Cell Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abb, J., Bayliss, C.J. and Deinhardt, F. Lymphocyte activation by the tumor promoting agent 12–0-tetradecanoyl-phorbol-13-acetate (TPA). J. Immunol., 122;1639, 1979.PubMedGoogle Scholar
  2. 2.
    Abney, E.R., Cooper, M.D., Kearney, J.F., Lafton, A.R. and Parkhouse, R.M.E. Sequential expression of immunoglobulin on developing mouse B-lymphocytes: a systematic survey that suggests a model for the generation of immunoglobulin isotype diversity. J. Immunol., 120:2041, 1978.PubMedGoogle Scholar
  3. 3.
    Adams, A. The state of the virus genome in transformed cells and its relationship to host cell DNA. In; M.A. Epstein and B.G Achong (eds.), The Epstein-Barr virus, pp. 125–184. New York: Springer-Verlag, 1979.Google Scholar
  4. 4.
    Ånan, P., Lundin, G., Hall, K., and Klein, G. Insulin receptors on human lymphoblastoid lines of B-cell origin. Cell. Immunol., 65:307, 1981.CrossRefGoogle Scholar
  5. 5.
    Andersson, L.C., Jokinen, M., and Gahmberg, C.G. Induction of erythroid differentiation in the human leukemia cell line K 562. Nature, London, 278:364, 1975CrossRefGoogle Scholar
  6. 6.
    Anisimovâ, E., Prachova, K., and Roubal, J. Effects of n-butyrate and phorbol ester (TPA) on Epstein-Barr virus antigen induction and cell differentiation. Manuscript in preparation.Google Scholar
  7. 7.
    Anisimová, E., Saemundsen, A.K., Roubal, J., Vonka, V., and Klein, G. Effect of n-butyrate on Epstein-Barr virus-carrying lymphoma lines. J. gen. Virol., 58:163, 1982.PubMedCrossRefGoogle Scholar
  8. 8.
    Anisimová, E., Tučková, E., Vonka, V., and Závadová, H. Ultra-structural changes induced by influenza viruses in permissive and non-permissive cells. Virology, 77:330, 1977.CrossRefGoogle Scholar
  9. 9.
    Béchêt, J.M., Fialkow, P.J., Nilsson, K., Klein, G. and Singh, S. Immunoglobulin synthesis and glukoso-6-phosphate dehydrogenase as cell markers in human lymphoblastoid cell lines. Exp. Cell Res., 89:275, 1974.PubMedCrossRefGoogle Scholar
  10. 10.
    Ben-Bassat, H., Polliack, A., Mitrani-Rosenbaum, S., Reichert, F., Froimovici, M., and Goldblum, N. A comparative study of human cell lines derived from patients with lymphoma, leukemia and infectious mononucleosis. Cancer, 40:1481, 1977.PubMedCrossRefGoogle Scholar
  11. 11.
    Ben-Sasson, S.A., and Klein, G. Activation of the Epstein-Barr virus genome by 5-aza-cytidine in latently infected human lymphoid lines. Int. J. Cancer, 28:131, 1981.PubMedCrossRefGoogle Scholar
  12. 12.
    Bister, K., Yamamoto, N. and Hausen, H. Differential inducibility of Epstein-Barr virus in cloned, non-producer Raji cells. Int. J. Cancer, 23:818, 1979.PubMedCrossRefGoogle Scholar
  13. 13.
    Blazer, B., Patarroyo, M., Klein, E., and Klein, G. Increased sensitivity of human lymphoid lines to natural killer cells after induction of the Epstein-Barr viral cycle by superinfection or sodium butyrate. J. Exp. Med., 151:614, 1980.CrossRefGoogle Scholar
  14. 14.
    Boutwell, R.K. Function and mechanism of promoters of carcinogenesis. CRC Critical Revs. Toxicol., 2:419, 1974.CrossRefGoogle Scholar
  15. 15.
    Crawford, D.H., Rickinson, A.B., Finerty, S., and Epstein, M.A. Epstein-Barr (EB) virus genome-containing EB nuclear antigen-negative B-lymphocyte populations in blood in acute infectious mononucleosis. J. Gen. Virol., 38:449, 1978.PubMedCrossRefGoogle Scholar
  16. 16.
    Dalens, M., Zech, L., and Klein, G. Origin of lymphoid lines established from mixed cultures of cord-blood lymphocytes and expiants from infectious mononucleosis, Burkitt’s lymphoma and healthy donors. Int. J. Cancer, 16:1008, 1975.PubMedCrossRefGoogle Scholar
  17. 17.
    Diamond, L., O’Brien, T.G., and Rovera, G. Tumor promoters: effects on proliferation and differentiation of cells in cultures. Life Sciences, 23:1979, 1978.Google Scholar
  18. 18.
    Durr, F.E., Monroe, J.H., Schmitter, R., Traul, K.A., and Hirshaut, Y. Studies on the infectivity and cytopathology of Epstein-Barr virus in human lymphoid cells. Int. J. Cancer, 6:436, 1970.PubMedCrossRefGoogle Scholar
  19. 19.
    Epstein, M.A. and Achong, B.C. Various forms of Epstein-Barr virus infection in man: established facts and a general concept. Lancet, i: 836, 1973.CrossRefGoogle Scholar
  20. 20.
    Epstein, M.A. and Achong, B.C. The relationship of the virus to Burkitt’s lymphoma. In: M.A. Epstein and B.G. Achong (eds.), The Epstein-Barr Virus. pp. 321–338. New York: Springer-Verlag, 1979.CrossRefGoogle Scholar
  21. 21.
    Frizzera, G., Hanto, D.W., Gajl-Peczalska, K.J., Rosai, J., McKenna, R.W., Sibley, R.K., Holahan, K.P., and Lindquist, L.L. Polymoprhic diffuse B-cell hyperplasias and lymphomas in renal transplant recipients. Cancer Res., 41:4262, 1981.PubMedGoogle Scholar
  22. 22.
    Gergely, L., Czeglédy, J., Váczi, L., Szkalka, A., and Berßnyi, E. Cells containing Epstein-Barr nuclear antigen (EBNA) in peripheral blood. Acta Microbiol. Acad. Sci. Hung., 26:41, 1979.Google Scholar
  23. 23.
    Gergely, L., Klein, G., and Ernberg, I. Host cell macromo-lecular synthesis in cells containing EBV-induced early antigens, studied by continued immunofluorescence and radioautography. Virology, 45:22, 1971.PubMedCrossRefGoogle Scholar
  24. 24.
    Gidlund, M., Orn, A., Pattengale, P.K., Jansson, M., Wigzell, H., and Nilsson, K. Natural killer cells kill tumor cells at a given stage of differentiation. Nature, 292:848, 1981.PubMedCrossRefGoogle Scholar
  25. 25.
    Guglielmi, P. and Preud’Homme, J.L. Immunoglobulin expression in human lymphoblastoid cell lines with early B-cell features. Scand. J. Immunol., 13:303, 1981.PubMedCrossRefGoogle Scholar
  26. 26.
    Gunven, P., Klein, G., Klein, E., Norin, T. and Singh, S. Surface immunoglobulins in Burkitt’s lymphoma biopsy cells from 91 patients. Int. J. Cancer, 25:711, 1980.PubMedCrossRefGoogle Scholar
  27. 27.
    Hanto, D.W., Frizzera, G., Purtilo, D.T., Sakamoto, K., Sullivan, J.L., Saemundsen, A.K., Klein, G., Simmons, R.L., and Najarian, J.S. Clinical spectrum of lymphoproliferative disorders in renal transplant recipients and evidence for the role of Epstein-Barr virus. Cancer Res., 41: 4253, 1981.PubMedGoogle Scholar
  28. 28.
    Helderman, J.H., Reynolds, T.C. and Strom, T.B. The insulin receptors as a universal marker of activated lymphocytes. Eur. J. Immunol., 8:589, 1978.PubMedCrossRefGoogle Scholar
  29. 29.
    Helderman, J.H. and Strom, T.B. Emergence of insulin receptors upon alloimmune T cells in the rat. J. Clin. Invest., 59: 338, 1977.PubMedCrossRefGoogle Scholar
  30. 30.
    Helderman, J.H. and Strom, T.B. Specific insulin binding site on T and B lymphocytes as a marker of cell activation. Nature (London), 274:62, 1978.CrossRefGoogle Scholar
  31. 31.
    Henle, G. and Henle, W. Immunofluorescence in cells derived from Burkitt’s lymphoma. J. Bacteriol., 91:1248, 1966.PubMedGoogle Scholar
  32. 32.
    Henle, G., and Henle, W. The virus as an etiologic agent of infectious mononucleosis. In: M.A. Epstein and B.G. Achong (eds.), The Epstein-Barr Virus, pp. 297–320. New York: Springer-Verlag, 1979.CrossRefGoogle Scholar
  33. 33.
    Henle, G., Henle, W., and Klein, G. Demonstration of two distinct components in the early antigen complex of Epstein-Barr virus infected cells. Int. J. Cancer, 8:272, 1971.PubMedCrossRefGoogle Scholar
  34. 34.
    Hinuma, Y. and Grace, J.T. Cloning of immunoglobulin producing human leukemia and lymphoma cells in long-term culture. Proc. Soc. Exp. Biol. Med., 124:107, 1967.PubMedGoogle Scholar
  35. 35.
    Hoffman-Liebermann, B., Liebermann, D., and Sachs, L. Regulation of gene expression by tumor promoters. III. Complementation of the developmental program in myeloid leukemic cells by regulating m-RNA production and m-RNA translation. Int. J. Cancer, 28:615, 1981.PubMedCrossRefGoogle Scholar
  36. 36.
    Huberman, E. and Callaham, M.F. Induction of terminal differentiation in human promyelocytic leukemia cells by tumor-promoting agents. Proc. Natl. Acad. Sci. USA, 76:1293, 1979.PubMedCrossRefGoogle Scholar
  37. 37.
    Ito, Y., Kawanishi, M., Harayama, T., and Takabayashi, S. Combined effect of the extracts from Croton tiglium, Euphorbia lathyris or Euphorbia tirucalli and n-butyrate on Epstein-Barr virus expression in human lymphoblastoid P3HR-1 and Raji cells. Cancer Letters, 12:175, 1981.PubMedCrossRefGoogle Scholar
  38. 38.
    Kettman, J.R., Cambier, J.C., Uhr, J.W., Ligler, F., and Vitetta, E.S. The role of receptor IgM and IgD in determining, triggering and induction of tolerance in murine B-cells. In: G. Moller (ed.), Immunological Reviews. Vol. 43, pp. 69–95. Muntsgaard, Copenhagen, 1979.Google Scholar
  39. 39.
    Kinsella, A.R. and Radman, R. Tumor promoter induces sister chromatid exchanges: relevance to the mechanism of carcinogenesis. Proc. Natl. Acad. Sci. USA, 75:6149, 1978.PubMedCrossRefGoogle Scholar
  40. 40.
    Kishimoto, K., Hirano, T., Kuritani, T., Yamamura, Y., Ralph, P., and Good, R.A. Induction of IgG production in human B lymphoblastoid cell lines with normal human T cells. Nature (London), 271:756, 1978.CrossRefGoogle Scholar
  41. 41.
    Klein, G. The relationship of the virus to nasopharyngeal carcinoma. In; M.A. Epstein and B.G. Achong (eds.), The Epstein-Barr Virus, pp. 339–415. New York: Springer-Verlag, 1979.CrossRefGoogle Scholar
  42. 42.
    Klein, G. Immune and non-immune control of neoplastic development: contrasting effects of host and tumor evolution. Cancer, 45: 2486, 1980.PubMedCrossRefGoogle Scholar
  43. 43.
    Klein, E., Ernberg, I., Masucci, M.G., Szigeti, R., Wu, Y.T., Masucci, G., and Svedmyr, E. T-cell response to B-cells and Epstein-Barr virus antigens in infectious mononucleosis. Cancer Res., 41:4210, 1981.PubMedGoogle Scholar
  44. 44.
    Klein, G., Giovanella, B., Westman, A., Stehlin, J.G., and Mumford, D. An EBV-genome negative cell line established from an American Burkitt lymphoma; receptor characteristics, EBV-infectability and permanent conversion into EBV-positive sublines by rn vitro infection. Intervirology, 5: 319, 1975.PubMedGoogle Scholar
  45. 45.
    Klein, G., Nilsson, K., and Yefenof, E. An established Burkitt’s lymphoma line with cell membrane IgG. Clin. Immunol. Immunopathol., 3:575, 1975.PubMedCrossRefGoogle Scholar
  46. 46.
    Klein, G., Zeuthen, J., Terasaki, P., Billing, R., Honig, R., Jondal, M., Westman, A., and Clements, G. Inducibility of the Epstein-Barr virus (EBV) cycle and surface marker properties of EBV negative lymphoma lines and their in vitro EBV-converted sublines. Int. J. Cancer, 18:639, 1976.PubMedCrossRefGoogle Scholar
  47. 47.
    Krug, U., Krug, F., and Cuatrecasas, P. Emergence of insulin receptors on human lymphocytes during in vitro transformation. Proc. Natl. Acad. Sci. USA, 69:2604, 1972.PubMedCrossRefGoogle Scholar
  48. 48.
    Leder, A. and Leder, P. Butyric acid, a potent inducer of erythroid differentiation in cultured erythroleukemic cells. Cell, 5:319, 1975.PubMedCrossRefGoogle Scholar
  49. 49.
    Lok, M.S., Koshiba, H., Hant, T., Abe, S., Minowada, I., and Sandberg, A.A. Establishment and characterization of human B-lymphocytic lymphoma cell lines (BALM-3, -4 and -5). Intraclonal variations in the B-cell differentiation stage. Int. J. Cancer, 24:572, 1979.PubMedCrossRefGoogle Scholar
  50. 50.
    Lotem, J. and Sachs, L. Regulation of normal differentiation in mouse and human myeloid leukemic cells by phorbol esters and the mechanisms of tumor promotion. Proc. Natl. Acad. Sci. USA, 76:5158, 1979.PubMedCrossRefGoogle Scholar
  51. 51.
    Luka, J., Kallin, B., and Klein, G. Induction of the Epstein-Barr virus (EBV) cycle in latently infected cells by n-butyrate. Virology, 94:228, 1979.PubMedCrossRefGoogle Scholar
  52. 52.
    Luka, J., Siegert, W., and Klein, G. Solubilization of the Epstein-Barr virus determined nuclear antigen and its characterization as a DNA-binding protein. J. Virol., 22:1, 1977.PubMedGoogle Scholar
  53. 53.
    Marchalonis, J.J. and Cone, R.E. Biochemical and biological characteristics of lymphocyte surface immunoglobulin. Transplant. Revs., 14:3, 1978.Google Scholar
  54. 54.
    Miao, R.M., Fieldsteel, A.H., and Fodge, D.W. Opposing effects of tumour promoters on erythroid differentiation. Nature (London), 274:271, 1978.CrossRefGoogle Scholar
  55. 55.
    Miller, G. Human lymphoblastoid cell lines and Epstein-Barr virus: a review of their interrelationship and their relevance to the etiology of leukoproliferative states in man. Yale J. Biol. Med., 43:358, 1971.Google Scholar
  56. 56.
    Morser, J., Meager, A., and Colman, A. Enhancement of interferon m-RNA levels in butyric acid treated Namalwa cells. Febs. Letters, 112:203, 1980.PubMedCrossRefGoogle Scholar
  57. 57.
    Nilsson, K. High frequency establishment of human immunoglobulin-producing lymphoblastoid lines from normal and malignant lymphoblastoid tissue and peripheral blood. Int. J. Cancer, 8:432, 1971.PubMedGoogle Scholar
  58. 58.
    Nilsson, K. Established human lymphoid cell lines as a model for B lymphocyte differentiation. In: B. Serrou and C. Ronsenfeld (eds.), Human Lymphocyte Differentiation: Its Application to Cancer, pp. 307–317. Amsterdam: Elsevier/North-Holland Biomed. Press, 1978.Google Scholar
  59. 59.
    Nilsson, K. The nature of lymphoid cell lines and their relationship to the virus. In: M.A. Epstein and B.G. Achong (eds.), The Epstein-Barr Virus, pp. 225–281. New York: Springer-Verlag, 1979.CrossRefGoogle Scholar
  60. 60.
    Nilsson, K., Andersson, L.C., Gahmberg, C.G. and Wigzell, H. Surface glycoprotein patterns of normal and malignant human lymphoid cells. II. B-cells, B-blasts and Epstein-Barr virus (EBV) positive and negative B-lymphoid lines. Int. J. Cancer, 20:708, 1977.PubMedCrossRefGoogle Scholar
  61. 61.
    Nilsson, K., Forsbeck, K., Gidlund, M., Sundström, C., Töterman, T., Sällström, J. and Wenge, P. Surface characteristics of the U-937 human histiocytic lymphoma line. Specific changes during inducible morphologic and functional differentiation In vitro. In:Google Scholar
  62. 62.
    Nilsson, K. and Pontén, J. Classification and biological nature of established human hematopoietic cell lines. Int. J. Cancer, 15:321, 1975.PubMedCrossRefGoogle Scholar
  63. 63.
    Nonoyama, M. and Pagano, J.S. Replication of viral deoxyribonucleic acid and breakdown of cellular deoxyribonucleic acid in Epstein-Barr virus infection. J. Virol., 9:714, 1972.PubMedGoogle Scholar
  64. 64.
    Ooka, T. and Calender, A. Effects of arabinofuranosylthy-mine on Epstein-Barr virus replication. Virology, 104:219, 1980.PubMedCrossRefGoogle Scholar
  65. 65.
    Patarroyo, M., Biberfeld, D., Klein, E., and Klein, G. 12–0-tetradecanoylphorbol-13-acetate (TPA) treatment elevates the natural killer (NK) sensitivity of certain human lymphoid lines. Cell. Immunol., 63:237, 1981.PubMedCrossRefGoogle Scholar
  66. 66.
    Prasad, K.N. and Sinha, P.K. Effects of sodium butyrate on mammalian cells in culture: a review. In vitro, 12:125, 1976.PubMedCrossRefGoogle Scholar
  67. 67.
    Pulvertaft, R.J.V. A study of malignant tumors in Nigeria by short term tissue cultures. J. Clin. Pathol., 18:261, 1965.PubMedCrossRefGoogle Scholar
  68. 68.
    Purtilo, D.T. Epstein-Barr-virus-induced oncogenesis in immune deficient individuals. Lancet, i:300, 1980.CrossRefGoogle Scholar
  69. 69.
    Purtilo, D.T. Malignant lymphoproliferative diseases induced by Epstein-Barr virus in immunodeficient patients, including X-linked, cytogenetic, and familial syndromes. Cancer Genet. Cytogenet., 4:251, 1981.PubMedCrossRefGoogle Scholar
  70. 70.
    Purtilo, D.T. and Sakamoto, K. Reactivation of Epstein-Barr virus in pregnant women, social factors, and immune competence as determinants of lymphoproliferative diseases. A hypothesis. Medical Hypothesis, 8:401, 1982.CrossRefGoogle Scholar
  71. 71.
    Reece, E.R., Gartner, J.G., Seemayer, T.A., Joncas, J.H., and Pagano, J.S. Epstein-Barr virus in malignant lymphoproliferative disorder of B-cells occurring after thymic epithelial transplantation for combined immunodeficiency. Cancer Res., 41:4243, 1981.PubMedGoogle Scholar
  72. 72.
    Reedman, B.M. and Klein, G. Cellular localization of an Epstein-Barr virus (EBV)-associated complement-fixing antigen in producer and non-producer lymphoblastoid cell lines. Int. J. Cancer, 11:499, 1973.PubMedCrossRefGoogle Scholar
  73. 73.
    Rickinson, A.B., Jarvis, J.E., Crawford, D.H., and Epstein, M.A. Observations on the type of infection by Epstein-Barr virus in peripheral lymphoid cells of patients with infectious mononucleosis. Int. J. Cancer, 14; 704, 1974.PubMedCrossRefGoogle Scholar
  74. 74.
    Rickinson, A.B., Moss, D.J., Wallace, L.E., Rowe, M., Misko, I.S., Epstein, M.A., and Pope, J.H. Long-term T-cell mediated immunity to Epstein-Barr virus. Cancer Res., 41:4216, 1981.PubMedGoogle Scholar
  75. 75.
    Rifkin, D.B., Crowe, R.M., and Pollack, R. Tumor promoters induce changes in the chick embryo fibroblast cytoskeleton. Cell, 18:361, 1979.PubMedCrossRefGoogle Scholar
  76. 76.
    Riggs, M.G., Whittaker, R.G., Neumann, J.R., and Ingram, J.M. n-Butyrate causes histone modification in HeLa and Friend erythroleukemia cells. Nature (London), 268:462, 1977.CrossRefGoogle Scholar
  77. 77.
    Robinson, J.E., Brown, N., Andiman, W., Halliday, K., Francke, U., Robert, M., Andersson-Anvret, M., Horshmann, D., and Miller, G. Diffuse polyclonal B cell lymphoma during primary infection with Epstein-Barr virus. N. Engl. J. Med., 302:1293, 1980.PubMedCrossRefGoogle Scholar
  78. 78.
    Robinson, J.E., Smith, D., and Niederman, J. Plasmacytic differentiation of circulating Epstein-Barr virus-infected B lymphocytes during acute infectious mononucleosis. J. exp. Med., 153:235, 1981.PubMedCrossRefGoogle Scholar
  79. 79.
    Rovera, G., O’Brien, T.G., and Diamond, L. Tumor promoters inhibit spontaneous differentiaton of Friend erythro-leukemic cells in culture. Proc. Natl. Acad. Sci. USA, 74:2894, 1977.CrossRefGoogle Scholar
  80. 80.
    Rovera, G., Santoli, D., and Damsky, C. Human promyelocytic leukemia cells in culture differentiate into macrophage-like cells when treated with phorbol diester. Proc. Natl. Acad. Sci. USA, 76:2779, 1979.PubMedCrossRefGoogle Scholar
  81. 81.
    Rymo, L., Lindahl, T., Povey, S., and Klein G. Analysis of restriction endonuclease fragments of intracellular Epstein-Barr virus DNA and isoenzymes indicate a common origin of the Raji, NC 37 and F265 human lymphoid cell lines. Virology, 115;115, 1981.PubMedCrossRefGoogle Scholar
  82. 82.
    Saemundsen, A.K., Kallin, B., and Klein, G. Effect of n-butyrate on cellular and viral DNA synthesis in cells latently infected with Epstein-Barr virus. Virology, 107: 557, 1980.PubMedCrossRefGoogle Scholar
  83. 83.
    Seif, R. Factors which disorganize microtubules or micro filaments increase the frequency of cell transformation by polyoma virus. J. Virol., 36: 421, 1980.PubMedGoogle Scholar
  84. 84.
    Seligman, M., Preud’Homme, J.L., and Brouet, J.C. Human lymphoproliferative disease as models of lymphocyte dif-ferentiaton. In: B. Serrou and C. Rosenfeld (eds.), Human Lymphocyte Differentiation. Its Application to Cancer. pp. 133–140. Amsterdam: Elsevier/North Holland Biomed. Press, 1978.Google Scholar
  85. 85.
    Simonová, I., Závadová, H., and Vonka, V. Differential expression of D and R components of Epstein-Barr virus early antigen after superinfection and after induction with 5-iododeoxyuridine. Acta Virol., 21:184, 1977.PubMedGoogle Scholar
  86. 86.
    Spira, G., Åman, P., Koide, N., Lundin, G., Klein, G., and Hall, K. Cell surface immunoglobulin and insulin receptor expression in an EBV-negative lymphoma cell line and its EBV-converted sublines. J. Immunol., 126:122, 1981.PubMedGoogle Scholar
  87. 87.
    Steel, CM., Philipson, J., Arthur, E., Gardiner, S.E., Newton, M.S., and Mcintosh, R.V. Possibility of EB virus preferentially transforming a subpopulation of human B-lymphocytes. Nature (London), 270:729, 1977.CrossRefGoogle Scholar
  88. 88.
    Steinitz, M., and Klein, G. EBV-transformation of surface IgA-positive human lymphocytes. J. Immunol., 125:194, 1980.PubMedGoogle Scholar
  89. 89.
    Steinitz, M., Bakacz, T., and Klein, G. Interaction of the B95–8 and P3HR-1 substrains of Epstein-Barr virus (EBV) with peripheral human lymphocytes. Int. J. Cancer, 22:251, 1978.PubMedCrossRefGoogle Scholar
  90. 90.
    Suchankova, A. and Vonka, V. UV-inactivation of Epstein-Barr virus: differences in early antigen expression in two different non-productive cell lines and influence of caffeine. Acta Virol., 22:383, 1978.PubMedGoogle Scholar
  91. 91.
    Totterman, T.H., Nilsson, K., Claesson, L., Simonsson, B., and Aman, P. Differentiation of chronic lymphocytic leukemia cells in vitro. I. Phorbol ester-induced changes in the synthesis of immunoglobulins and HLA-DR. Human Lymphocyte Differentiation, 1:13, 1981.Google Scholar
  92. 92.
    Totterman, T.H., Nilsson, K., and Sundström, C. Phorbolester-induced differentiation of chronic lymphocytic leukemia cells. Nature (London), 288;176, 1980.CrossRefGoogle Scholar
  93. 93.
    Van Boxel, J.A. and Buell, D.N. IgD on cell membranes of human lymphoid cell lines with multiple immunoglobulin classes. Nature (London), 251:443, 1974.CrossRefGoogle Scholar
  94. 94.
    Vitetta, E.S. and Uhr, J.W. Immunoglobulin-receptors revisited. Science, 189:964, 1975.PubMedCrossRefGoogle Scholar
  95. 95.
    Weinstein, I.B., Lee, L.S., Fisher, P.B., Mutson, A. and Yamasaki, H. Action of phorbol esters in cell culture: mimicry of transformation, altered differentiation, and effects on cell membranes. J. Supramolec. Struct., 12:195, 1979.CrossRefGoogle Scholar
  96. 96.
    Weinstein, T.B. and Wigler, M. Cell culture studies provide new information on tumor promoters. Nature (London), 270:659, 1977.CrossRefGoogle Scholar
  97. 97.
    Zech, K., Haglund, W., Nilsson, K., and Klein, G. Characteristic chromosomal abnormalities in biopsies and lymphoid cell lines from patients with Burkitt and non-Burkitt lymphomas. Int. J. Cancer, 17:47, 1976.PubMedCrossRefGoogle Scholar
  98. 98.
    zur Hausen, H., Bornkamm, G.W., Schmidt, R., and Hecker, E. Tumor initiators and promoters in the induction of Epstein-Barr virus. Proc. Natl. Acad. Sci. USA, 76:782–785, 1979.PubMedCrossRefGoogle Scholar
  99. 99.
    zur Hausen, H., O’Neill, F.J., Freese, U.K., and Hecker, E. Persisting oncogenic herpesvirus induced by the tumour promoter TPA. Nature (London), 272:373, 1978.CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • Jaroslav Roubal
    • 1
  • Emma Anisimová
    • 1
  • Kateřina Prachová
    • 1
  1. 1.Department of Experimental VirologyInstitute of Sera and VaccinesPrague 10Czechoslovakia

Personalised recommendations