Epstein-Barr Virus in New Host Cells

  • David J. Volsky


Study of Epstein-Barr virus (EBV) is troubled by a number of vexing paradoxes- EBV was discovered 20 years ago (6,7). The biological roles and the molecular mechanisms of action of EBV remains a puzzle.


Lymphoblastoid Cell Line Infectious Mononucleosis Sendai Virus Lytic Cycle Mouse Lymphocyte 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bayliss, G.J. and Wolf, H. Epstein-Barr virus-induced cell fusion. Nature, 287:164, 1980.PubMedCrossRefGoogle Scholar
  2. 2.
    Bird, A.G. and Britton, S. A live human B-cell activator operating in isolation of other cellular influences. Scand. J. Immunol., 9:507, 1979.PubMedCrossRefGoogle Scholar
  3. 3.
    Dales, S. Early events in cell-animal virus interactions. Bacteriological Reviews, 27: 103, 1973.Google Scholar
  4. 4.
    Dion, L. D., De Luca, L.M., and Colburn, N.H. Phorbol ester-induced anchorage independence and its antagonism by retinoic acid correlates with altered expression of specific glycoproteins. Carcinogenesis, 2(10):951, 1981.PubMedCrossRefGoogle Scholar
  5. 5.
    Epstein, M.A. and Achong, B.G. Introduction: discovery and general biology of the virus. In: M. A. Epstein and B. G. Achong (eds.), The Epstein-Barr Virus, pp. 1–4. Berlin, New York: Springer-Verlag, 1979.CrossRefGoogle Scholar
  6. 6.
    Epstein, M.A. and Achong, B.G. Morphology of the virus and of virus induced cytopathologic changes. In: M.A. Epstein and B.G. Achong (eds.), The Epstein-Barr Virus. pp. 23–33. Berlin, New York: Springer-Verlag, 1979.CrossRefGoogle Scholar
  7. 7.
    Epstein, M.A. and Achong, B.G. The relationship of the virus to Burkitt’s lymphoma. In: M.A. Epstein and B.G. Achong (eds.), The Epstein-Barr Virus. pp. 321–329. Berlin, New York: Springer-Verlag, 1979.CrossRefGoogle Scholar
  8. 8.
    Ernberg, I., Masucci, G., and Klein, G. Persistence of Epstein-Barr virus nuclear antigens (EBNA) in cells entering the EB viral cycle. Int. J. Cancer, 17:197, 1976.CrossRefGoogle Scholar
  9. 9.
    Glaser, R., Lang, C. Max, Lee, K.J., Schuller, D.E., Jacobs, D., and McQuattie, C. Attempt to infect nonmalignant nasopharyngeal epithelial cells from humans and squirrel monkeys with Epstein-Barr virus. J. Natl. Cancer Inst., 5:1085, 1980.Google Scholar
  10. 10.
    Graessmann, A., Graessmann, M., and Mueller, C. Regulatory function of Simian virus 40 DNA replication for late viral gene expression. Proc. Natl. Acad. Sci. USA, 74:4831, 1977.PubMedCrossRefGoogle Scholar
  11. 11.
    Graessman, A., Wolf, H., and Bornkamm, G.W. Expression of Epstein-Barr virus genes in different cell types after microinjection of viral DNA. Proc. Natl. Acad. Sci. USA, 77:433, 1980.CrossRefGoogle Scholar
  12. 12.
    Graham, F. L. and Van Der Eb, A.J. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology, 52:456, 1973.PubMedCrossRefGoogle Scholar
  13. 13.
    Gregoriadis, G. Tailoring liposome structure. Nature, 283:814, 1980.PubMedCrossRefGoogle Scholar
  14. 14.
    Hoggan, M.D., Bowe, W.P., Black, P.M., and Hubner, R.J. Production of tumor specific antigens by oncogenic viruses during acute cytolytic infections. Proc. Natl. Acad. Sci. USA, 53:12, 1965.PubMedCrossRefGoogle Scholar
  15. 15.
    Hosaka, Y. and Shimizu, K. Artificial assembly of envelope particles of HVJ (Sendai virus). I. Assembly of hemolytic and fusion factors from envelopes solubilized with Nonidet P-40. Virology, 49:627, 1972.PubMedCrossRefGoogle Scholar
  16. 16.
    Huang, R.T.C., Wahn, K., Klenk, D.H., and Rott, R. Fusion between cell membrane and liposomes containing the glycoproteins of influenza virus. Virology, 104:294, 1980.PubMedCrossRefGoogle Scholar
  17. 17.
    Jondal, M. and Klein, G. Surface markers on human B and T lymphocytes. II. Presence of Epstein-Barr virus receptors on B lymphocytes. J. Exp. Med., 138:1365, 1973,PubMedCrossRefGoogle Scholar
  18. 18.
    Kallin, B., Luka, J., and Klein, G. Immunochemical characterization of Epstein-Barr virus-associated early and late antigens in n-Butyrate-treated P3HR-1 cells. J. Virol., 32:710, 1979.PubMedGoogle Scholar
  19. 19.
    Klein, G. The relationship of the virus to nasopharyngeal carcinoma, In: M.A. Epstein and B.G. Achong (eds.), The Epstein-Barr Virus. pp. 339–350. Berlin, New York: Springer-Verlag, 1979.CrossRefGoogle Scholar
  20. 20.
    Klein, G., Gergely, L., and Goldstein, G. Two-color immunofluorescence studies on EBV-determined antigens. Clin. Exp. Immunol., 8:593, 1971.PubMedGoogle Scholar
  21. 21.
    Klein, G., Giovanella, B., Westman, A., Steblin, J.S., and Mumford, D. An EBV-genome negative cell line established from American Burkitt lymphoma: receptor characteristics, EBV infectivity and permanent conversion into EBV positive sublines by in vitro infection. Intervirol., 5:319, 1976.Google Scholar
  22. 22.
    Koehler, G. and Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature (London), 256:495, 1975.CrossRefGoogle Scholar
  23. 23.
    Kulka, R.G. and Loyter, A. The use of fusion methods for the microinjection of animal cells. In: F. Bronner and A. Kleinzeller (eds.), Current Topics in Membranes and Transport. Vol. 12, pp. 365–430. New York: Academic Press, 1979.Google Scholar
  24. 24.
    Linzer, D. and Levine, J.J. Characterization of a 54 K Dalton cellular SV-40 tumor antigen present in SV-40 transformed cells and uninfected embryonal carcinoma cells. Cell, 17:43, 1979.PubMedCrossRefGoogle Scholar
  25. 25.
    Loyter, A. and Volsky, D.J. The use of reconstituted Sendai virus envelopes as carriers for the introduction of biological materials into animal cells. In: G. Poste and J.A. Nicholson (eds.), Cell Surface Review. In press, 1982.Google Scholar
  26. 26.
    Luka, J., Jornvall, H., and Klein, G. Purification and biochemical characterization of the Epstein-Barr virus-determined nuclear antigen and an associated protein with a 53,000-Dalton subunit. J. Virol., 35: 592, 1980.PubMedGoogle Scholar
  27. 27.
    McCormick, F., Clark, R., Harlow, E., and Tjian, R. SV-40 T antigen binds specifically to a cellular/53 K protein in vitro. Nature, 292:63, 1981.PubMedCrossRefGoogle Scholar
  28. 28.
    Menzes, Y., Sergneuron, J.M., Petel, P., Bourkas, A., and Lenoir, G. Presence of Epstein-Barr virus receptors but absence of virus penetration, in cells of an Epstein-Barr virus genome-negative human lymphoblastoid T line (Molt-4). J. Virol., 22:816, 1977Google Scholar
  29. 29.
    Miller, G. Biology of Epstein-Barr virus. In: G. Klein (ed.), Viral Oncology. pp. 713–734. New York: Raven Press, 1980.Google Scholar
  30. 30.
    Miller, G., Grogan, E., Heston, L., Robinson, J., and Smith, D. Epstein-Barr viral DNA: infectivity for human placental cells. Science, 212:457, 1981.CrossRefGoogle Scholar
  31. 31.
    Miller, G., Shope, T., Coope, D., Waters, L., Pagano, J., Bornkamm, G.W., and Henle, W. Lymphoma in cotton-topped marmosets after inoculation with Epstein-Barr virus: tumor incidence, histologic spectrum, antibody responses, demonstration of viral DNA, and characterization of viruses. J. Exp. Med., 145:948, 1977.PubMedCrossRefGoogle Scholar
  32. 32.
    Morgan, D.G., Miller, G., Niederman, J.C., Smith, H.W., and Dowably, J.M. Site of Epstein-Barr virus replication in the oropharynx. Lancet, i:1154, 1979.CrossRefGoogle Scholar
  33. 33.
    Mueller-Lantzsch, N., George-Fries, B., Herbst, H., Zur Hausen, H. and Braun, D.G. Epstein-Barr virus strain -and group-specific antigenic determinants detected by monoclonal antibodies. Int. J. Cancer, 28:321, 1981.PubMedCrossRefGoogle Scholar
  34. 34.
    Okada, Y., Koseki, J., Kim, J., Maeda, Y., Hashimoto, T., Kanno, Y., and Matsui Y. Modification of cell membranes with viral envelopes during fusion of cells with HVJ (Sendai virus). Exp. Cell Res., 93:368.Google Scholar
  35. 35.
    Papahadjopoulos, D., Fraley, R., Heath, T.D., and Straubinger, R.M. Liposomes: recent advances in methodology for introducing macromolecules into eukaryotic cells. Techniques in Cellular Physiology, P114:1, 1981.Google Scholar
  36. 36.
    Pearson, G.R. Epstein-Barr virus: immunology. In: G. Klein (ed.), Viral Oncology. pp. 739–767. New York: Raven Press, 1980.Google Scholar
  37. 37.
    Pellicer, A., Wagner, E.R., Kareh, A., Dewey, M.J., Reuser, A.J., Silverstein, S., Axel, R., and Mintz, B. Introduction of a viral thymidine kinase gene and the human B-globin gene into developmentally multipotential mouse teratocarcinoma cells. Proc. Natl. Acad. Sci. USA, 77(4):2098, 1980.PubMedCrossRefGoogle Scholar
  38. 38.
    Penn, J. Host origin of lymphomas in organ transplant recipients. Transplantation, 27:214, 1979.PubMedCrossRefGoogle Scholar
  39. 39.
    Prujansky-Jakobovits, A., Volsky, D.J., Loyter, A., and Sharon, N. Alteration of lymphocyte surface properties by insertion of foreign functional plasma membrane components. Proc. Natl. Acad. Sci. USA, 77:7247, 1980.PubMedCrossRefGoogle Scholar
  40. 40.
    Purtilo, D.T. Epstein-Barr-virus-induced oncogenesis in immune-deficient individuals. Lancet, i:300, 1980.CrossRefGoogle Scholar
  41. 41.
    Purtilo, D.T. Immune deficiency predisposing to Epstein-Barr virus-induced lymphoproliferative diseases: the X-linked lymphoproliferative syndrome as a model. Adv. Cancer Res., 34:279, 1981.PubMedCrossRefGoogle Scholar
  42. 42.
    Qualtiere, L.F., Chase, R., Broman, B., and Pearson, G.R. Identification of Epstein-Barr virus strain differences with monoclonal antibody to a member glycoprotein. Proc. Natl. Acad. Sci. USA, 79:616, 1982.PubMedCrossRefGoogle Scholar
  43. 43.
    Qualtiere, L.F. and Pearson, G.R. Radioimmune precipitation study comparing the Epstein-Barr virus membrane antigens expressed on P3HR-1 virus-superinfected Raji cells to those expressed on cells in a B-95 virus transformed producer culture activated with Tumor-Promoting agent (TPA). Virol., 102:360, 1980.CrossRefGoogle Scholar
  44. 44.
    Read, G.S., Person, S., and Keller, P.M. Genetic studies of cell fusion induced by herpes simples virus type 1. J. Virology, 35:105, 1980.PubMedGoogle Scholar
  45. 45.
    Reedman, B.M. and Klein, G. Cellular localization of an Epstein-Barr virus (EBV) associated complement-fixing antigen in producer and non-producer lymphoblastoid cell lines. Int. J. Cancer, 11:499, 1973.PubMedCrossRefGoogle Scholar
  46. 46.
    Seshi, B., Volsky, B., Anderson, R., Purtilo, D.T., and Volsky, D.J. Infection of normal human thymic epithelial cells by Epstein-Barr virus (EBV) following implantation of EBV receptors. Thymus, in press.Google Scholar
  47. 47.
    Shapiro, I.M., Klein, G., and Volsky, D.J. Epstein-Barr virus coreconstituted with Sendai virus envelopes infects Epstein-Barr virus receptor-negative cells. Biochem. Biophys. Acta, 676:19, 1981.PubMedCrossRefGoogle Scholar
  48. 48.
    Shapiro, I.M. and Volsky, D.J. Infection of human nasopharyngeal epithelial cells by Epstein-Barr virus (EBV) following EBV receptor-transplantation. Science, in press.Google Scholar
  49. 49.
    Shapiro, I.M., Volsky, D.J., Saemundsen, A., Anisimova, E., and Klein, G. Infection of the human T cell-derived leukemia line Molt-4 by Epstein-Barr virus (EBV): induction of EBV determined antigens and virus production. Virol., 120:171, 1982.CrossRefGoogle Scholar
  50. 50.
    Stacey, D.W. and Allfrey, V.G. Evidence of autophagy of microinjected proteins in HeLa cells. J. Cell Biol., 75:870, 1977.CrossRefGoogle Scholar
  51. 51.
    Stoerker, J., Parris, D., Yajima, Y., and Glaser, R. Pleiotropic expression of Epstein-Barr virus DNA in human epithelial cells. Proc. Natl. Acad. Sci. USA, 78(9): 5852, 1981.PubMedCrossRefGoogle Scholar
  52. 52.
    Summers, W.P.., Grogan, E.Z., Shedd, D., Robert, M., Liu, Chun-Ren, and Miller, G. Stable expression in mouse cells of nuclear neoantigen after transfer of a 3.4-megadalton cloned fragment of Epstein-Barr virus DNA. Proc. Natl. Acad. Sci. USA, 79:5688, 1982.PubMedCrossRefGoogle Scholar
  53. 53.
    de-The, G. The role of Epstein-Barr virus in human diseases: infectious mononucleosis, Burkitt’s lymphoma and nasopharyngeal carcinoma. In: G. Klein (ed.), Viral Oncology, pp. 769–798. New York: Raven Press, 1980.Google Scholar
  54. 54.
    Tsukuda, K., Volsky, D.J., Shapiro I.M., and Klein, G. Changed patterns of human B-lymphocyte activation by Epstein-Barr virus (EBV), following EBV-receptor implantation prior to infection. Eur. J. Immunol., 12:87, 1982.PubMedCrossRefGoogle Scholar
  55. 55.
    Volsky, D.J., Ahrlund-Richter, L., Dalianis, T., and Klein, G. Implantation of mouse histocompatibility antigens into membranes of cultured tumor cells. Eur. J. Immunol., 11:341, 1981.PubMedCrossRefGoogle Scholar
  56. 56.
    Volsky, D.J. and Anderson, R. Preleukemia patients have a consistent lymphocyte defect as reflected by the deficiency in Epstein-Barr virus receptors. Submitted for publication.Google Scholar
  57. 57.
    Volsky, D.J., Anderson, R., and Kuszynski, C. Establishment of permanent cultures from Epstein-Barr virus (EBV)-nonsusceptible human lymphocytes. In: J.W. Parker and R.C. O’Brien (eds.), 15th International Leukocyte Culture Conference. John Wiley & Sons, Inc., in press, 1983.Google Scholar
  58. 58.
    Volsky, D.J., Cabantchik, Z.I., Beigel, M., and Loyter, A. Implantation of human erythrocyte anion channel into plasma membrane of friend erythroleukeraic cells. Proc. Natl. Acad. Sci. USA, 76:5440, 1979.PubMedCrossRefGoogle Scholar
  59. 59.
    Volsky, D.J., Klein, G., Volsky, B., and Shapiro, I.M. Production of infectious Epstein-Barr virus in mouse lymphocytes. Nature, 293:399, 1981.PubMedCrossRefGoogle Scholar
  60. 60.
    Volsky, D.J. and Loyter, A. An efficient method for reassembly of fusogeneic Sendai virus envelopes after solubilization of intact virions with Triton X-100. FEBS Lett., 92:190, 1978.PubMedCrossRefGoogle Scholar
  61. 61.
    Volsky, D.J., Shapiro, I.M., and Klein, G. Transfer of Epstein-Barr virus receptors to receptor-negative cells permits virus penetration and antigen expression. Proc. Natl. Acad. Sci. USA., 77:5453, 1980.PubMedCrossRefGoogle Scholar
  62. 62.
    Volsky, D.J., Shapiro, I.M., and Kuszynski, C. A murine model system for studying the molecular mechanism of Epstein-Barr virus (EBV)-mediated cell transformation and carcinogenesis. Fed. Proc, 41:688, 1982.Google Scholar
  63. 63.
    Volsky, B. and Volsky, D.J. Anti-Epstein-Barr virus (EBV) immune response in mice inoculated with autologous EBV-infected lymphocytes. The Sixth Cold Spring Harbor Meeting on Herpesviruses. pp. 83. New York: Cold Spring Harbor Lab, 1982.Google Scholar
  64. 64.
    Wigler, M., Sweet, R., Sim, G.K., Wold, B., Pellicer, A., Lacy, E., Maniatis, T., Silverstein, S., and Axel, R. Transformation of mammalian cells with genes from pro-caryotes and eucaryotes. Cell, 16: 777, 1979.PubMedCrossRefGoogle Scholar
  65. 65.
    Wilson, T., Paphadjopoulos, D., and Taber, R. The introduction of poliovirus RNA into cells via lipid vesicles (Liposomes). Cell, 17: 77, 1979.PubMedCrossRefGoogle Scholar
  66. 66.
    Yamato, N., Mueller-Lantsch, N., and zur Hausen, H. Effect of actinoraycin D and cycloheximide on Epstein-Barr virus early antigen induction of lymphoblastoid cells. J. Gen. Virol., 51:255, 1980.CrossRefGoogle Scholar
  67. 67.
    Zeuthen, J. and Klein, G. B-cell and Epstein-Barr Virus (EBV) associated functions in human cells and hybrids. In: J.E. Celis, A. Graessman, and A. Loyter (eds.), Transfer of Cell Constituents into Eukaryotic Cells. NATO Advanced Study. Series A, pp. 235–262. New York: Raven Press, 1980.CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • David J. Volsky
    • 1
  1. 1.Department of Pathology & Laboratory MedicineUniversity of Nebraska Medical CenterOmahaUSA

Personalised recommendations