Idiotypic Markers and the Three-Dimensional Structure of Immunoglobulins

  • Roberto J. Poljak


A discussion of the structural correlates of idiotypic markers is a difficult task at the present state of our knowledge of the three-dimensional structure of immunoglobulins and of the amino acid sequence definition of idiotypic markers. Only a few three-dimensional immunoglobulin structures have been determined at high resolution (reviewed in Refs. 1–3), and none of these are from immunoglobulin molecules that possess the major idiotypic markers associated with some immune responses(4).In addition, the characterization of idiotypic markers by protein sequencing or by DNA sequencing has not progressed enough to give suitably general examples that could facilitate the conformational analysis of idiotypic markers. Another conceptual difficulty arises from the fact that idiotypes are defined operationally, often by serological reactions whose complexity escapes accurate structural description. Here we enter the area of protein-protein interactions for which we have few adequate examples that have been studied with the structural detail that would be necessary for the present analysis. In these interactions the contacting residues could be capable of assuming several conformational states one of which will be selected for the formation of a stable complex.


Hypervariable Region Amino Acid Side Chain Immunoglobulin Heavy Chain Serological Reaction Antigenic Marker 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Davies, D. R., Padlan, E. A., and Segal, D., 1975, Three-dimensional structure of immunoglobulins, Annu. Rev. Biochem. 44:639–667.PubMedCrossRefGoogle Scholar
  2. 2.
    Kabat, E. A., Wu, T. T., Bilofsky, H., Reid-Miller, M., and Perry, H., 1983,Sequences of Proteins of Immunologicial Interest, U.S. Department of Health and Human Services, NIH, Bethesda.Google Scholar
  3. 3.
    Poljak, R. J., 1978, Correlations between three-dimensional structure and function of immunoglobulins, CRC Crit. Rev. Biochem. 5:45–84.PubMedCrossRefGoogle Scholar
  4. 4.
    Eichmann, K., 1975, Genetic control of antibody specificity in the mouse,Immunogenetics 2:491–506.CrossRefGoogle Scholar
  5. 5.
    Phillips, S. E. V., Hall, D., and Perutz, M. F., 1981, Structure of deoxyhemoglobin Zurich (His E7(63/?)—*Arg), J. Mol. Biol. 150:137–141.PubMedCrossRefGoogle Scholar
  6. 6.
    Atassi, M. Z., 1979, The antigenic structure of myoglobin and initial consequences of its precise determination, CRC Crit. Rev. Biochem. 6:337–369.PubMedCrossRefGoogle Scholar
  7. 7.
    Arnon, R., 1977, Immunochemistry of lysozyme, in: Immunochemistry of Enzymes and Their Antibodies (M. R. J. Salton, ed.), Wiley, New York, pp. 1–28.Google Scholar
  8. 8.
    Van Regenmortel, M. H. V., 1982, Serology and Immunochemistry of Plant Viruses, Academic Press, New York.Google Scholar
  9. 9.
    Lerner, R. A., 1982, Tapping the immunological repertoire to produce antibodies of predetermined specificity, Nature 299:592–596.CrossRefGoogle Scholar
  10. 10.
    Milstein, C. P., Steinberg, A. G., McLaughlin, C. L., and Solomon, A., 1974, Amino acid sequence change associated with genetic marker Inv(2) of human immunoglobulin, Nature 248:160–161.PubMedCrossRefGoogle Scholar
  11. 11.
    Schiffer, M., Girling, R. L., Ely, K. R., and Edmundson, A. B., 1973, Structure of a X-type Bence-Jones protein at 3.5 A resolution, Biochemistry 12:4620–4631.PubMedCrossRefGoogle Scholar
  12. 12.
    Poljak, R. J., Amzel, L. M., Avey, H. P., Chen, B. L., Phizackerley, R. P., and Saul, F., 1973, Three- dimensional structure of the Fab’ fragment of a human immunoglobulin at 2.8 A resolution, Proc. Natl. Acad. Sci. USA 70:3305–3310.PubMedCrossRefGoogle Scholar
  13. 13.
    Brack, C., Hirama, M., Lenhard-Schuller, R., and Tonegawa, S., 1978, A complete immunoglobulin gene is created by somatic recombination, Cell 15:1–14.PubMedCrossRefGoogle Scholar
  14. 14.
    Sakano, H., Huppi, K., Heinrich, G., and Tonegawa, S., 1979, Sequences at the somatic recombination sites of immunoglobulin light-chain genes,Nature 280:288–294.PubMedCrossRefGoogle Scholar
  15. 15.
    Max, E. E., Seidman, J. G., and Leder, P., 1979, Sequence of five potential recombination sites encoded close to an immunoglobulin constant region gene, Proc., Natl. Acad. Sci. USA 76:3450–3454.CrossRefGoogle Scholar
  16. 16.
    Early, P., Huang, H., Davis, M., Calame, K., and Hood, L., 1980, An immunoglobulin heavy chain variable region gene is generated from three segments of DNA:VH, DH and JH, Cell 19:981–992.PubMedCrossRefGoogle Scholar
  17. 17.
    Sakano, H., Maki, R., Kurosawa, Y., Roeder, W., and Tonegawa, S., 1980, Two types of somatic recombination are necessary for the generation of complete heavy chain genes, Nature 286:676–683.PubMedCrossRefGoogle Scholar
  18. 18.
    Gough, N. M., and Bernard, O., 1981, Sequences of the joining region genes for immunoglobulin heavy chains and their role in the generation of antibody diversity, Proc. Natl. Acad. Sci. USA 78:509–513.PubMedCrossRefGoogle Scholar
  19. 19.
    Alt, F. W., and Baltimore, D., 1982, Joining of immunoglobulin heavy chain gene segments: Implications from a chromosome with evidence of three D-JH fusions, Proc. Natl. Acad. Sci. USA 79:4118–4122.PubMedCrossRefGoogle Scholar
  20. 20.
    Segal, D. M., Padlan, E. A., Cohen, G. H., Rudikoff, S., Potter, M., and Davies, D. R., 1974, The three- dimensional structure of a phosphorylcholine-binding mouse immunoglobulin Fab and the nature of the antigen binding site, Proc. Natl. Acad. Sci. USA 71:4298–4302.PubMedCrossRefGoogle Scholar
  21. 21.
    Saul, F. A., Amzel, L. M., and Poljak, R. J., 1978, Preliminary refinement and structural analysis of the Fab’ fragment from human immunoglobulin New at 2.0 A resolution, J. Biol. Chem. 25:585–597.Google Scholar
  22. 22.
    Padlan, E. A., Davies, D. R., Rudikoff, S., and Potter, M., 1976, Structural basis for the specificity of phosphorylcholine-binding immunoglobulins, Immunochemistry 13:945–949.PubMedCrossRefGoogle Scholar
  23. 23.
    Leon, M. A., and Young, N. M., 1971, Specificity for phosphorylcholine of six murine myeloma proteins reactive with pneumococcus C polysaccharide and B-lipoprotein, Biochemistry 10:1424–1429.PubMedCrossRefGoogle Scholar
  24. 24.
    Stevens, F. J., Westholm, F. A., Solomon, A., and Schiffer, M., 1980, Self-association of human immunoglobulin kappa-I light chains: Role of the third hypervariable region, Proc. Natl. Acad. Sci. USA 77:1144–1148.PubMedCrossRefGoogle Scholar
  25. 25.
    Morahan, G., Berek, C., and Miller, J. F. A. P., 1983, An idiotypic determinant formed by both immunoglobulin constant and variable regions, Nature 301:720–722.PubMedCrossRefGoogle Scholar
  26. 26.
    Oudin, J., and Cazenave, P. A., 1971, Similar idiotypic specificities in immunoglobulin fractions with different antibody functions or even without detectable antibody function, Proc. Natl. Acad. Sci. USA 74:4600- 4604.Google Scholar
  27. 27.
    Jerne, N. K., 1974, Towards a network theory of the immune system, Ann. Immunol. (Inst. Pasteur) 125C:l-9.Google Scholar
  28. 28.
    Berman, M. A., Spiegelberg, H. L., and Weigle, W. O., 1970, Lymphocyte stimulation with Fc fragments. I. Class, subclass and domain of active fragments, J. Immunol. 122:89–96.Google Scholar
  29. 29.
    Takemori, T., Tesch, H., Reth, M., and Rajewsky, K., 1982, The immune response against anti-idiotope antibodies. I. Induction of idiotope-bearing antibodies and analysis of the idiotope repertoire, Eur. J. Immunol. 12:1040–1046.PubMedCrossRefGoogle Scholar
  30. 30.
    Margolies, M.N., Wysocki, L. J., and Sato, V. L., 1983, Immunoglobulin idiotype and anti-anti-idiotype utilize the same variable region genes irrespective of antigen specificity, J. Immunol. 130:515–517PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Roberto J. Poljak
    • 1
  1. 1.Département d’ImmunologieInstitut PasteurParis Cedex 15France

Personalised recommendations