Advertisement

Analysis of the GAT B Repertoire

  • Michel Fougereau
  • José Rocca-Serra
  • Claudine Schiff
  • Cécile Tonnelle

Abstract

Synthetic polypeptides(1) were first used as structurally well-defined models to understand the antigenicity of proteins, for which the exact nature of any given epitope was and still remains far from clear, except in a very few cases.(2,3) They subsequently proved decisive tools to discover genes which regulate the immune response in the guinea pig(4) and the mouse.(5) Among synthetic polypeptides, the (Glu60Ala30Tyr10) n random terpolymer, known as “GAT,” has been extensively used. This polymer, with molecular weights usually ranging between 30,000 and 100,000, is recognized by the immune system mostly through conformational epitopes,(6) and contains a high amount of α-helix. Genetic control of the immune response to GAT has been largely documented in the mouse, allowing definition of responder and nonresponder strains,(7) the later being of the H-2 P , H-2 q , and H-2 s haplotypes. As “nonresponder” (NR) strains could be forced to make anti-GAT antibodies provided the synthetic polypeptide was coupled to a carrier, such as methylated BSA,(8) the absence of response in NR strains was not due to a deficient repertoire at the B-cell level. In fact, a more detailed analysis of anti-GAT antibodies produced by both responder and “nonresponder” strains indicated that the repertoires looked very similar with respect to idiotypic specificities identified on GAT-specific antibodies.(9)

Keywords

Light Chain Heavy Chain Synthetic Polypeptide Antibody Heavy Chain Allotypic Specificity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sela, N., 1967, Antigenicity: some molecular aspects, Science 166 :1365–1374.CrossRefGoogle Scholar
  2. 2.
    Arnon, R., Marón, E., Sela, M., and Anfinsen, G. B., 1971, Antibodies reactive with lysozyme elicited by a completely synthetic antigen,Proc. Natl. Acad. Sci. USA 68:1450–1455.PubMedCrossRefGoogle Scholar
  3. 3.
    Smith-Gill, S., Wilson, A. C., Potter, M., Prager, E. M., Feldman, R. J., and Mainhart, G. R., 1982, Mapping the antigenic epitope for a monoclonal antibody against lysozyme,J. Immunol. 128:314–322.PubMedGoogle Scholar
  4. 4.
    Levine, B. B., Ojeda, A., and Benacerraf, B., 1963, Studies on artificial antigens. III. The genetic control of the immune response to hapten-poly-L-lysine conjugates in guinea pigs,J. Exp. Med. 118:953–957.PubMedCrossRefGoogle Scholar
  5. 5.
    McDevitt, H. O., and Sela, M., 1965, Genetic control of the antibody response. I. Demonstration of determinant-specific differences in response to synthetic polypeptide antigens in two strains of inbred mice, J. Exp. Med. 122:517–531.PubMedCrossRefGoogle Scholar
  6. 6.
    Schechter, B., Schechter, I., Ramachandran, J., Conway-Jacobs, A., Sela, M., Benjamini, E., and Shimizu, M., 1971, Synthetic antigens with sequential and conformation-dependent determinants containing the same L-tyrosyl-L-alanyl-L-glutamyl sequence, Eur. J. Biochem. 20:309–320.PubMedCrossRefGoogle Scholar
  7. 7.
    Martin, W. J., Maurer, P. M., and Benacerraf, B., 171, Genetic control of immune responsiveness to poly Glu60Ala30Tyr10 (GAT) in mice. I. Linkage of responsiveness to H-2 genotypes, J. Immunol. 107:715–719.Google Scholar
  8. 8.
    Kapp, J. A., Pierce, C. W., and Benacerraf, B., 1973, Genetic control of the immune response in vitro. I. Development of primary and secondary plaque-forming cells response to the random terpolymer L. glutamic acid60-Lalanine30-L tyrosine10 (GAT) by mouse spleen cells in vitro, J. Exp. Med. 138:1107–1120.PubMedCrossRefGoogle Scholar
  9. 9.
    Ju, S. T., Kipps, T. J., Théze, J., Benacerraf, B., and Dorf, M. E., 1978, Idiotypic analysis of anti-GAT antibodies. I. Presence of common idiotypic specificities in both responder and non responder mice, J. Immunol. 121:1034–1039.PubMedGoogle Scholar
  10. 10.
    Ju, S. T., Benacerraf, B., and Dorf, M. E., 1978, Idiotypic analysis of antibodies to poly (Glu60Tyr30Ala10): Interstrain and interspecies idiotypic cross-reactions, Proc. Natl. Acad. Sci. USA 75:6192–6196.PubMedCrossRefGoogle Scholar
  11. 11.
    Pierres, M., Ju, S. T., Waltenbaugh, C., Dorf, M. E., Benacerraf, B., and Germain, R. N., 1979, Fine specificity of antibodies to poly (Glu60Ala30Tyr10) produced by hybrid cell lines, Proc. Natl. Acad. Sci. USA 76:2425–2429.PubMedCrossRefGoogle Scholar
  12. 12.
    Ju, S. T., Pierres, M., Waltenbaugh, G, Germain, R. N., Benacerraf, B., and Dorf, M. E., 1979, Idiotypic analysis of monoclonal antibodies to poly (Glu60Ala30Tyr10), Proc. Natl. Acad. Sci. USA 76:2942–2946.PubMedCrossRefGoogle Scholar
  13. 13.
    Ju, S. T., Pierres, M., Germain, R. N., Benacerraf, B., and Dorf, M. E., 1979, Idiotypic analysis of anti- GAT antibodies. VI. Identification and strain distribution of the GA-1 idiotype, J. Immunol. 123:2505–2510.PubMedGoogle Scholar
  14. 14.
    Ju, S. T., Pierres, M., Germain, R. N., Benacerraf, B., and Dorf, M. E., 1980, Idiotypic analysis of anti- GAT antibodies. VII. Common idiotype on hybridoma antibodies to poly (Glu60 Ala40), J. Immunol. 125:1230–1236.PubMedGoogle Scholar
  15. 15.
    Ju, S. T., Pierres, M., Germain, R. N., Benacerraf, B., and Dorf, M. E., 1981, Idiotypic analysis of anti- GAT antibodies. VIII. Comparison of interstrain and allotype-associated idiotypic specificities, J. Immunol. 126:177–182.PubMedGoogle Scholar
  16. 16.
    Ju, S. T., and Dorf, M. E., 1981, Idiotypic analysis of anti-GAT antibodies. IX. Genetic mapping of the Gte idiotypic marker within the Igh-V locus, J. Immunol. 126:183–186.PubMedGoogle Scholar
  17. 17.
    Ju, S. T., Pierres, M., Fougereau, M., and Dorf, M. E., 1983, Interrelationships among distinct idiotypic specificities, Ann. Immunol. (Inst. Pasteur) 135C:63–68.Google Scholar
  18. 18.
    Thèze, J., and Moreau, J.-L., 1978, Genetic control of the immune response to the GAT terpolymer. I. Interstrain and interspecies cross ractive idiotype, Ann. Immunol. (Inst. Pasteur) 129:721–726.Google Scholar
  19. 19.
    Sommé, G., and Thèze, J., 1979, Genetic control of the immune response to the terpolymer GAT. IV. Heterogeneity of idiotype GAT-715, Mol. Immunol. 16:1119–1126.PubMedCrossRefGoogle Scholar
  20. 20.
    Ju, S. T., Granier, D. V., and Dorf, M. E., 1979, Idiotypic analysis of anti-GAT antibodies: Distribution of an interspecies cross-reactive idiotype, J. Immunol. 123:877–883.PubMedGoogle Scholar
  21. 21.
    Sommé, G., Leclercq, L., Petit, C., and Thèze, J., 1981, Genetic control of the immune response to the terpolymer GAT. V. Three types of idiotypic specificities on BALB/c anti-GAT antibodies, Eur. J. Immunol. 11:493–498.PubMedCrossRefGoogle Scholar
  22. 22.
    Leclercq, L., Mazié, J.-C., Sommé, G., and Thèze, J., 1982, Monoclonal anti-GAT antibodies with different fine specificities express the same public idiotype, Mol. Immunol. 19:1001–1009.PubMedCrossRefGoogle Scholar
  23. 23.
    Oudin, J., and Michel, M., 1963, Une nouvelle forme d’allotypie des globulines du sérum de lapin appare- ment liée à la fonction et à la spécificité anticorps, C. R. Acad. Sci. Ser. D. 257:805–808.Google Scholar
  24. 24.
    Brient, B. W., and Nisonoff, A., 1970, Quantitative investigations of idiotypic antibodies. IV. Inhibition by specific haptens of the reaction of anti-hapten antibody with its anti-idiotypic antibody, J. Exp. Med. 132:951–961.PubMedCrossRefGoogle Scholar
  25. 25.
    Sher, A., Lord, E., and Cohn, M., 1971, Reconstitution from subunits of the hapten binding sites and idiotypic determinants of mouse anti-phosphorylcholine myeloma proteins, J. Immunol. 107:1226–1234.PubMedGoogle Scholar
  26. 26.
    Reth, M., Imanishi-Kari, T., and Rajewsky, K., 1979, Analysis of the repertoire of anti-NP antibodies in C57BL/6 mice by cell fusion. II. Characterization of idiotypes by monoclonal anti-idiotope antibodies, Eur. J. Immunol. 9:1004–1013.PubMedCrossRefGoogle Scholar
  27. 27.
    Sommé, G., Rocca-Serra, J., Leclercq, L., Moreau, J.-L., Mazié, J.-C., Moinier, D., Fougereau, M., and Thèze, J., 1982, Contribution of the H- and L-chains and of the binding site to the idiotypic specificities of mouse anti-GAT antibodies, Mol. Immunol. 19:1011–1019.PubMedCrossRefGoogle Scholar
  28. 28.
    Carson, D., and Weigert, M., 1973, Immunochemical analysis of the cross-reactive idiotypes of mouse myeloma proteins with anti-dextran activity and normal anti-dextran antibody, Proc. Natl. Acad. Sci. USA 70:235–239.PubMedCrossRefGoogle Scholar
  29. 29.
    Imanishi, T., and Mâkelâ, O., 1973, Strain differences in the fine specificity of mouse anti-hapten antibodies, Eur. J. Immunol. 3:323–330.PubMedCrossRefGoogle Scholar
  30. 30.
    Claflin, J. L., and Davie, J. M., 1975, Specific isolation and characterization of antibody directed to binding site antigenic determinants, J. Immunol. 114:70–75.PubMedGoogle Scholar
  31. 31.
    Schiff, C., Boyer, C., Milili, M., and Fougereau, M., 1979, The idiotypy of MOPC 173 mouse myeloma protein: Characterization of syngeneic, allogeneic and xenogeneic anti-idiotypic antibodies. Contribution of H and L chains to the idiotypic determinants, Eur. J. Immunol. 9:831–841.PubMedCrossRefGoogle Scholar
  32. 32.
    Lieberman, R., Vrana, N., Humphrey, W., Chien, J. R. C. C., and Potter, M., 1977, Idiotypes of inulin- binding myeloma proteins localized to variable region light and heavy chains: Genetic significance, J. Exp. Med. 146:1294–1303.PubMedCrossRefGoogle Scholar
  33. Ruf, J., Tonnelle, C., Rocca-Serra, J., Moinier, D., Pierres, M., Ju, S. T., Dorf, M. E., Thèze, J., andFougereau, M., 1983, Structural bases for public idiotypic specificities of monoclonal antibodies directed against poly (Glu60Ala30Tyr10) and poly (Glu60Ala40) random copolymers, Proc. Natl. Acad. Sci. USA 80:3040–3044.PubMedCrossRefGoogle Scholar
  34. 33.
    Tonnelle, C., Pierres, M., Ju, S. T., Moinier, D., and Fougereau, M., 1981, NH2-terminal aminoacid sequences of poly (Glu60Ala30Tyr10) (GAT) and poly (Glu60Ala40) (GA) monoclonal antibody heavy chains, Mol. Immunol. 18:979–984.PubMedCrossRefGoogle Scholar
  35. 34.
    Rocca-Serra, J., Mazie, J.-C., Moinier, D., Leclercq, L., Somme, G., Theze, J., and Fougereau, M., 1982, The limited diversity of the mouse 7-chains anti-GAT repertoire does not seem to be noticeably amplified upon class switch, J. Immunol. 129:2554–2558.PubMedGoogle Scholar
  36. 35.
    Rocca-Serra, J., Tonnelle, C., and Fougereau, M., 1983, Two monoclonal antibodies against different antigens use the same VH germ-line gene, Nature 304:353–355.PubMedCrossRefGoogle Scholar
  37. 36.
    Kabat, E. A., Wu, T. T., Bilofsky, H., Reid-Miller, M., and Perry, H., 1983,Sequences of Proteins of Immunological Interest, U.S. Department of Health and Human Services.Google Scholar
  38. 37.
    Potter, M., Newell, J. B., Rudikoff, S., and Haber, E., 1982, Classification of mouse VK groups based on the partial amino acid sequence to the first invariant tryptophan: Impact of 14 new sequences from IgG myeloma, Mol. Immunol. 19:1619–1630.PubMedCrossRefGoogle Scholar
  39. 38.
    Rocca-Serra, J., Matthes, H. W., Kaartinen, M., Milstein, C., Theze, J., and Fougereau, M., 1983, Analysis of antibody diversity: V-D-J mRNA nucleotide sequence of four anti-GAT monoclonal antibodies. A paucigene system using alternate D-J recombinations to generate functionally similar hypervariable regions, EMBO J. 2:867–872.PubMedGoogle Scholar
  40. 39.
    Hamlyn, P. H., Brownlee, G. G., Cheng, C. G, Gait, M. J., and Milstein, C., 1978, Complete sequence of constant and 3’ non-coding regions of an immunoglobulin mRNA using the dideoxynucleotide method of RNA sequencing, Cell 15:1067–1075.PubMedCrossRefGoogle Scholar
  41. 40.
    Sanger, F., Nicklen, S., and Carlson, A. R., 1977, DNA sequencing with chain-terminating inhibitors, Proc. Natl. Acad. Set. USA 74:5463–5467.CrossRefGoogle Scholar
  42. 41.
    Kurosawa, Y., and Tonegawa, S., 1982, Organization, structure and assembly of immunoglobulin heavy chain diversity DNA segments, J. Exp. Med. 155:201–218.PubMedCrossRefGoogle Scholar
  43. 42.
    Schiff, C., Milili, M., and Fougereau, M., 1983, Immunoglobulin diversity: Analysis of the germ-line VH gene repertoire of the murine anti-GAT response, Nucleic Acids Res. 11:4007–4017.PubMedCrossRefGoogle Scholar
  44. 43.
    Loh, D. Y., Bothwell, A. L. M., White-Scharf, M. E., Imanishi-Kari, T., and Baltimore, D., 1983, Molecular basis of a mouse strain-specific anti-hapten response, Cell 33:85–93.PubMedCrossRefGoogle Scholar
  45. 44.
    Lazure, C., Tung-Hum, W., and Gibson, D. M., 1981, Sequence diversity within a subgroup of mouse immunoglobulin kappa chains controlled by the Ig«-Ef2 locus, J. Exp. Med. 154:146–155.PubMedCrossRefGoogle Scholar
  46. 45.
    Morse, H. C., Ill, Goode, J. H., and Rudikoff, S., 1977, Murine plasma cells secreting more than one class of immunoglobulin heavy chain. IV. Sequence differences between chain of SAMM 368 IgG2b and IgA, J. Immunol. 119:361–363.PubMedGoogle Scholar
  47. 46.
    Prahl, J. W., Mandy, W. J., and Todd, C. W., 1969, The molecular determinants of the All and A12 allotypic specificities in rabbit immunoglobulin, Biochemistry 8:4935–4940.PubMedCrossRefGoogle Scholar
  48. 47.
    Appella, E., Chersi, A., Mage, R. G., and Dubiski, S., 1971, Structural basis of the A14 and A15 allotypic specificities in rabbit immunoglobulin G, Proc. Natl. Acad. Sci. USA 68:1341–1345.PubMedCrossRefGoogle Scholar
  49. 48.
    Franek, F., and Nezlin, R. S., 1963, Recovery of antibody combining activity by interaction of different peptide chains isolated from purified horse antitoxins, Folia Microbiol. (Prague) 8:128–130.CrossRefGoogle Scholar
  50. 49.
    Edelman, G. M., Olins, D. E., Gaily, J. A., and Zinder, N., 1963, Reconstitution of immunoglobulin activity by interaction of polypeptide chains of antibodies, Proc. Natl. Acad. Sci. USA 50:753–761.PubMedCrossRefGoogle Scholar
  51. 50.
    Fougereau, M. Olins, D. E., and Edelman, G. M., 1964, Reconstitution of antiphage antibodies from L and H polypeptide chains and the formation of interspecies molecular hybrids,J. Exp. Med. 120:349–358.PubMedCrossRefGoogle Scholar
  52. 51.
    Metzger, H., Wofsy, L., and Singer, S. J., 1964, The participation of A and B polypeptide chains in the active sites of antibody molecules, Proc. Natl. Acad. Sci. USA 51:612–618.PubMedCrossRefGoogle Scholar
  53. 52.
    Amzel, L. M., Poljak, R., Saul, F., Varga, J., and Richards, F., 1974, The three dimensional structure of a combining region-ligand complex of immunoglobulin NEW at 3.5 A resolution, Proc. Natl. Acad. Sci. USA 71:1427–1430.PubMedCrossRefGoogle Scholar
  54. 53.
    Brack, C., Hirama, M., Lenhard-Schuller, R., and Tonegawa, S., 1978, A complete immunoglobulin gene is created by somatic recombination, Cell 15:1–14.PubMedCrossRefGoogle Scholar
  55. 54.
    Sakano, H., Hiippi, K., Heinrich, G., and Tonegawa, S., 1979, Sequences at the somatic recombination sites of immunoglobulin light chain genes,Nature 280:288–294.PubMedCrossRefGoogle Scholar
  56. 55.
    Seidman, J. G., Max, E. E., and Leder, P., 1979, A K immunoglobulin gene is formed by site-specific recombinations without further somatic mutation, Nature 280:370–375.PubMedCrossRefGoogle Scholar
  57. 56.
    Early, P., Huang, H., Davis, M., Calame, K., and Hood, L., 1980, An immunoglobulin heavy chain variable region gene is generated from three segments of DNA: VH, D and JH , Cell 19:981–992.PubMedCrossRefGoogle Scholar
  58. 57.
    Bothwell, A. L. M., Paskind, M., Reth, M., Imanishi-Kari, T., Rajewsky, K., and Baltimore, D., 1981, Heavy chain variable region contribution to the NPb family of antibodies: Somatic mutations evident in a 72a variable region, Cell 24:625–637.PubMedCrossRefGoogle Scholar
  59. 58.
    de Preval, C., and Fougereau, M., 1976, Specific interaction between VH and VL regions of human monoclonal immunoglobulins, J. Mol. Biol. 102:657–678.PubMedCrossRefGoogle Scholar
  60. 59.
    Hilschmann, N., and Craig, L. C., 1965, Amino acid sequence studies with Bence-Jones proteins, Proc. Natl. Acad. Sci. USA 53 :1403–1409.PubMedCrossRefGoogle Scholar
  61. 61.
    Dryer, W. Y., and Bennett, J. C., 1965, The molecular basis of antibody formation: A paradox, Proc. Natl. Acad. Sci. USA 54:864–869.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Michel Fougereau
    • 1
  • José Rocca-Serra
    • 1
  • Claudine Schiff
    • 1
  • Cécile Tonnelle
    • 1
  1. 1.Centre d’Immunologie INSERM-CNRS de Marseille-LuminyFrance

Personalised recommendations