Advertisement

Structural and Genetic Basis of the Major Cross-Reactive Idiotype of the A Strain Mouse

  • Clive A. Slaughter
  • J. Donald Capra

Abstract

Structural features peculiar to the variable regions of antibodies are widely believed to interact with regulatory forces which help to control and fine-tune the specific immune responses in which these antibodies participate.(1) The serologically recognized features of antibody variable regions known as idiotypes(2,3) constitute structurally definable analogs of the sites which interact with regulatory forces in this way, and they may in some cases be identical to such sites. Over the last decade, a number of laboratories have devoted considerable effort to the detailed chemical characterization of idiotypic determinants on antibody molecules. Most of this research has centered on structural comparisons of antibodies or myeloma proteins which belong to families of related molecules sharing a common specificity for antigen but differing in their expression of a cross-reactive idiotype. Antibodies elicited in the mouse in response to the hapten P-azophenylarsonate (Ars) have been particularly well studied in this regard and illustrate many of the problems involved in the structural characterization of idiotypes in general.

Keywords

Light Chain Heavy Chain Immunoglobulin Heavy Chain Complete Amino Acid Sequence Myeloma Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jerne, N. K., 1974, Towards a network theory of the immune system, Ann. Immunol. (Inst. Pasteur) 125C:373–389.Google Scholar
  2. 2.
    Oudin, J., and Michel, M., 1963, Une nouvelle forme d’allotypie des globulinesy du sérum de lapin apparemment liée a la jonction et a la spécificité anticorps, C.R. Acad. Sci. 257:805–808.Google Scholar
  3. 3.
    Kunkel, H. G., Mannik, M., and Williams, R. C., 1963, Individual antigenic specificity of isolated antibodies, Science 140:1218–1219.PubMedCrossRefGoogle Scholar
  4. 4.
    Kohler, G., and Milstein, C., 1976, Derivation of specific antibody-producing tissue culture and tumor lines by cell fusion, Eur. J. Immunol. 6:511–519.PubMedCrossRefGoogle Scholar
  5. 5.
    Estess, P., Nisonoff, A., and Capra, J. D., 1979, Structural studies on induced antibodies with defined idiotypic specificities. VIII. NH2-terminal amino acid sequence analysis of heavy and light chain variable regions of monoclonal anti-p-azophenylarsonate antibodies from A/J mice differing with respect to a cross-reactive idiotype, Mol. Immunol. 16:1111–1118.PubMedCrossRefGoogle Scholar
  6. 6.
    Milner, E. C. B., and Capra, J. D., 1982, VH families in the antibody response to p-azophenylarsonate: Correlation between serology and amino acid sequence, J. Immunol. 129:193–199.PubMedGoogle Scholar
  7. 7.
    Capra, J. D., Tung, A. S., and Nisonoff, A., 1977, Structural studies on induced antibodies with defined idiotypic specificities. V. The complete amino acid sequence of the light chain variable regions of anti-p- azophenylarsonate antibodies from A/J mice bearing a cross-reactive idiotype, J. Immunol. 119:993–999.PubMedGoogle Scholar
  8. 8.
    Capra, J. D., and Nisonoff, A., 1979, Structural studies on induced antibodies with defined idiotypic specificities. VII. The complete amino acid sequence of the heavy chain variable region of anti-jfr-azo- phenylarsonate antibodies from A/J mice bearing a cross-reactive idiotype, J. Immunol. 123:279–284.PubMedGoogle Scholar
  9. 9.
    Siegelman, M., and Capra, J. D., 1981, Complete amino acid sequence of light chain variable regions derived from five monoclonal anti-/?-azophenylarsonate antibodies differing with respect to a cross-reactive idiotype, Proc. Natl. Acad. Sci. USA 78:7679–7683.PubMedCrossRefGoogle Scholar
  10. 10.
    Slaughter, C. A., Siegelman, M., Estess, P., Barasoain, I., Nisonoff, A., and Capra, J. D., 1982, Antibody diversity and idiotypes: Primary structural analysis of monoclonal A/J antiarsonate antibodies, in: Developmental Immunology: Clinical Problems and Aging (E. L. Cooper and M. A. B. Brazier, eds.), Academic Press, New York, pp. 45–67.Google Scholar
  11. 11.
    Kuettner, M. G., Wang, A.-L., and Nisonoff, A., 1972, Quantitative investigations of idiotypic antibodies. VI. Idiotypic specificity as a potential genetic marker for the variable regions of mouse immunoglobulin polypeptide chains, J. Exp. Med. 135:579–595.PubMedCrossRefGoogle Scholar
  12. 12.
    Pawlak, L. L., Mushinski, E. B., Nisonoff, A., and Potter, M., 1973, Evidence for the linkage of the IgCH locus to a gene controlling the idiotypic specificity of anti-/?-azophenylarsonate antibodies in strain A mice, J. Exp. Med. 137:22–31.PubMedCrossRefGoogle Scholar
  13. 13.
    Eichmann, K., 1975, Genetic control of antibody specificity in the mouse,Immunogenetics 2:491–506.CrossRefGoogle Scholar
  14. 14.
    Edelman, G. M., and Gottlieb, P. D., 1970, A genetic marker in the variable region of light chains of mouse immunoglobulins,Proc. Natl Acad. Sci. USA 67:1192–1199.PubMedCrossRefGoogle Scholar
  15. 15.
    Gibson, D., 1976, Genetic polymorphism of mouse immunoglobulin light chains revealed by isoelectric focusing, J. Exp. Med. 144:298–303.PubMedCrossRefGoogle Scholar
  16. 16.
    Laskin, J. A., Gray, A., Nisonoff, A., Klinman, N. R., and Gottlieb, P. D., 1977, Segregation at a locus determining an immunoglobulin genetic marker for the light chain variable region affects inheritance of expression of an idiotype,Proc. Natl. Acad. Sci. USA 74:4600–4604.PubMedCrossRefGoogle Scholar
  17. 17.
    Brown, A. R., Estess, P., Lamoyi, E., Gill-Pazaris, L., Gottlieb, P. D., Capra, J. D., and Nisonoff, A., 1980, Studies of genetic control and microheterogeneity of an idiotype associated with anti-jfr-azopheny- larsonate antibodies of A/J mice, Prog. Clin. Biol. Res. 42:231–248.PubMedGoogle Scholar
  18. 18.
    Tung, A. S., and Nisonoff, A., 1975, Isolation from individual A/J mice of anti-p-azophenylarsonate antibodies bearing a cross-reactive idiotype, J. Exp. Med. 141:112–126.PubMedCrossRefGoogle Scholar
  19. 19.
    Sigal, N. H., 1982, Regulation of azophenylarsonate-specific repertoire expression. I. Frequency of cross- reactive idiotype-positive B cells in A/J and BALB/c mice, J. Exp. Med. 156:1352–1365.PubMedCrossRefGoogle Scholar
  20. 20.
    Moser, M., Leo, O., Hiernaux, J., and Urbain, J., 1983, Idiotypic maniuplation in mice: BALB/c mice can express the cross-reactive idiotype of A/J mice, Proc. Natl. Acad. Sci. USA 80:4474–4478.PubMedCrossRefGoogle Scholar
  21. Estess, P., Lamoyi, E., Nisonoff, A., and Capra, J. D., 1980, Structural studies on induced antibodieswith defined idiotypic specificities. IX. Framework differences in heavy- and light-chain variable regions of monoclonal anti-p-azophenylarsonate antibodies from A/J mice differing with respect to a cross-reac- tive idiotype, J. Exp. Med. 154:863–875.CrossRefGoogle Scholar
  22. 21.
    Margolies, M. N., Marshak-Rothstein, A., and Gefter, M. L., 1981, Structural diversity among anti-jb- azophenylarsonate monoclonal antibodies from A/J mice: Comparison of Id- and Id+ sequences,Mol. Immunol. 18:1065–1077.PubMedCrossRefGoogle Scholar
  23. 22.
    Alkan, S. S., Knecht, R., and Braun, D. G., 1980, The cross-reactive idiotype of anti-4-azobenzene-arson- ate hybridoma-derived antibodies in A/J mice constitutes multiple heavy chains, Hoppe-Seyler’s Z. Physiol. Chem. 361:191–195.PubMedGoogle Scholar
  24. 23.
    Kresina, T. F., Rosen, S. M., and Nisonoff, A., 1982, Degree of heterogeneity of binding specificities of antibodies to the phenylarsonate group that share a common idiotype, Mol. Immunol. 19:1433–1439.PubMedCrossRefGoogle Scholar
  25. 24.
    Rothstein, T. L., and Gefter, M. L., 1983, Affinity analysis of idiotype-positive and idiotype-negative Ars- binding hybridoma proteins and Ars-immune sera,Mol. Immunol. 20:161–168.PubMedCrossRefGoogle Scholar
  26. 25.
    Lamoyi, E., Estess, P., Capra, J. D., and Nisonoff, A., 1980, Heterogeneity of an intrastrain cross-reactive idiotype associated with anti-jfr-azophenylarsonate antibodies of A/J mice, J. Immunol. 124:2834–2840.PubMedGoogle Scholar
  27. 26.
    Lamoyi, E., Estess, P., Capra, J. D., and Nisonoff, A., 1980, Presence of highly conserved idiotypic determinants in a family of antibodies that constitute an intrastrain cross-reactive idiotype, J. Exp. Med. 152:703–711.PubMedCrossRefGoogle Scholar
  28. 27.
    Nelles, M. J., Gill-Pazaris, L. A., and Nisonoff, A., 1981, Monoclonal anti-idiotypic antibodies reactive with a highly conserved determinant on A/J serum anti-/?-azophenylarsonate antibodies, J. Exp. Med. 154:1752–1763.PubMedCrossRefGoogle Scholar
  29. 28.
    Schilling, J., Clevinger, B., Davie, J. M., and Hood, L., 1980, Amino acid sequence of homogeneous antibodies to dextran and DNA rearrangements in heavy chain V region gene segments, Nature 283:35— 40.Google Scholar
  30. 29.
    Bothwell, A. L. M., Paskind, M., Reth, M., Imanishi-Kari, T., Rajewsky, K., and Baltimore, D., 1981, Heavy chain variable region contribution to the NPb family of antibodies: Somatic mutation evident in 72a variable region, Cell 24:625–637.PubMedCrossRefGoogle Scholar
  31. 30.
    Gearhart, P. J., Johnson, N. D., Douglas, R., and Hood, L., 1981, IgG antibodies to phosphorylcholine exhibit more diversity than their IgM counterparts, Nature (London) 291:29–34.CrossRefGoogle Scholar
  32. 31.
    Kaartinen, M., Griffiths, G. M., Hamlyn, P. H., Markham, A. F., Karjalainen, K., Pelkonen, J. L. T., Makela, O., and Milstein, C., 1983, Anti-oxazolone hybridomas and the structure of the oxazolone idiotype, J. Immunol. 130:937–945.PubMedGoogle Scholar
  33. 32.
    Ruf, J., Tonnelle, C., Rocca-Serra, J., Moinier, D., Pierres, M., Ju, S.-T., Dorf, M. E., Theze, J., and Fougereau, M., 1983, Structural bases for public idiotypic specificities of monoclonal antibodies directed against poly (Glu60 Ala30 Tyr10) and poly (Glu80 Ala60) random copolymers, Proc. Natl. Acad. Sci, USA 80:3040–3044.PubMedCrossRefGoogle Scholar
  34. 33.
    Pawlita, M., Potter, M., and Rudikoff, S., 1981, K-chain restriction in anti-galactan antibodies, J. Immunol. 129:615–618.Google Scholar
  35. 34.
    Vrana, M. S., Rudikoff, S., and Potter, M., 1978, Sequence variation among heavy chains from inulin- binding myeloma proteins,Proc. Natl. Acad. Sci. USA 75:1957–1961.PubMedCrossRefGoogle Scholar
  36. 35.
    Johnson, N., Slankard, J., Paul, L., and Hood, L., 1982, The complete V domain amino acid sequences of two myeloma inulin-binding proteins,J. Immunol. 128:302–307.PubMedGoogle Scholar
  37. 36.
    Milner, E. C. B., and Capra, J. D., 1983, Structural analysis of monoclonal anti-arsonate antibodies: Idiotypic specificities are determined by the heavy chain,Mol. Immunol. 20:39–46.PubMedCrossRefGoogle Scholar
  38. 37.
    Gill-Pazaris, L. A., Lamoyi, E., Brown, A. R., and Nisonoff, A., 1981, Properties of a minor cross-reactive idiotype associated with anti-jb-azophenylarsonate antibodies of A/J mice, J. Immunol.126:75–79.PubMedGoogle Scholar
  39. 37.
    Ball, R. K., Chang, J.-Y., Alkan, S. S., and Braun, D. G., 1983, The complete amino acid sequence of the light chain variable region of two monoclonal anti-p-azobenzene-arsonate antibodies bearing the cross- reactive idiotype, Mol. Immunol. 20:197–201.PubMedCrossRefGoogle Scholar
  40. 38.
    Sakano, H., Huppi, K., Heinrich, G., and Tonegawa, S., 1979, Sequences of the somatic recombination sites of immunoglobulin light-chain genes,Nature 280:288–294.PubMedCrossRefGoogle Scholar
  41. 39.
    Max, E. E., Seidman, J. G., and Leder, P., 1979, Sequences of five potential recombination sites encoded close to an immunoglobulin K constant region gene, Proc. Natl. Acad. Sci. USA 76:3450–3454.PubMedCrossRefGoogle Scholar
  42. 40.
    Kaartinen, M., Griffiths, G. M., Markham, A. F., and Milstein, C., 1983, mRNA sequences define an unusually restricted IgG response to 2-phenyloxazolone and its early diversification, Nature 304:320–324.PubMedCrossRefGoogle Scholar
  43. 41.
    Schiff, C., and Fougereau, M., 1975, Determination of the primary structure of a mouse IgG2a immunoglobulin: Amino acid sequence of the light chain, Eur. J. Biochem. 59:525–537.PubMedCrossRefGoogle Scholar
  44. 42.
    Siegelman, M., Slaughter, C. A., McCumber, L. J., Estess, P., and Capra, J. D., 1981, Primary structural studies of monoclonal A/J anti-arsonate antibodies differing with respect to a cross-reactive idiotype, in: Immunoglobulin Idiotypes (C. A. Janeway Jr., E. E. Sercarz, and H. Wigzell, eds.), Academic Press, New York, pp. 135–158.Google Scholar
  45. 43.
    Sims, J., Rabbitts, T. H., Estess, P., Slaughter, C. A., Tucker, P. W., and Capra, J. D., 1982, Somatic mutation in genes for the variable portion of the immunoglobulin heavy chain, Science 216:309–311.PubMedCrossRefGoogle Scholar
  46. 44.
    Capra, J. D., Slaughter, C. A., Milner, E. C. B., Estess, P., and Tucker, P. W., 1982, The cross-reactive idiotype of A-strain mice: Serological and structural studies, Immunol. Today 3:332–339.CrossRefGoogle Scholar
  47. 45.
    Slaughter, C. A., and Capra, J. D., 1983, Amino acid sequence diversity within the family of antibodies bearing the major anti-arsonate cross-reactive idiotype of the A-strain mouse, J. Exp. Med. 158:1615- 1634.PubMedCrossRefGoogle Scholar
  48. 46.
    Slaughter, C. A., Jeske, D. J., Kuziel, W. A., Milner, E. C. B., and Capra, J. D., Use of JH4 joining segment gene by an anti-arsonate antibody, J. Immunol (in press).Google Scholar
  49. Rabat, E. A., Wu, T. T., Bilofsky, H., Reid-Miller, M., and Perry, H., 1983, Sequences of proteins of immunological interest, U.S. Department of Health and Human Services.Google Scholar
  50. 48.
    Siekevitz, M., Gefter, M. L., Brodeur, P., Riblet, R., and A. Marshak-Rothstein, 1982, The genetic basis of antibody production: The dominant anti-arsonate idiotypic response of the strain A mouse, Eur. J. Immunol. 12:1023–1032.PubMedCrossRefGoogle Scholar
  51. 49.
    Siekevitz, M., Huang, S. Y., and Gefter, M. L., 1983, The genetic basis of antibody production: A single heavy chain variable region gene encodes all molecules bearing the dominant anti-arsonate idiotype in the strain A mouse, Eur. J. Immunol. 13:123–132.PubMedCrossRefGoogle Scholar
  52. 50.
    Estess, P., Otani, F., Milner, E. C. B., Capra, J. D., and Tucker, P. W., 1982, Gene rearrangements in monoclonal A/J anti-arsonate antibodies, J. Immunol. 129:2319–2322.PubMedGoogle Scholar
  53. 51.
    Kehry, M. R., Fuhrman, J. S., Schilling, J. W., Rogers, J., Sibley, C. H., and Hood, L. E., 1982, Complete amino acid sequence of a mouse µ chain: Homology among heavy chain constant region domains, Biochemistry 21:5415–5424.PubMedCrossRefGoogle Scholar
  54. 52.
    Zakut, R., Cohen, J., and Givol, D., 1980, Cloning and sequence of the cDNA corresponding to the variable region of immunoglobulin heavy chain MPC 11, Nucleic Acids Res. 8:3591–3601.PubMedCrossRefGoogle Scholar
  55. 53.
    Crews, S., Griffin, J., Huang, H., Calame, K., and Hood, L., 1981, A single VH gene segment encodes the immune response to phosphorylcholine: Somatic mutation is correlated with the class of the antibody, Cell 25:59–66.PubMedCrossRefGoogle Scholar
  56. 54.
    Milstein, C., and Pink, J. L. R., 1970, Structure and evolution of immunoglobulins,Prog. Biophys. Mol. Biol. 21:209–263.PubMedCrossRefGoogle Scholar
  57. 55.
    Wu, T. T., and Rabat, E. A., 1970, An analysis of the sequences of the variable regions of Bence-Jones proteins and myeloma light chains and their implications for antibody complementarity, J. Exp. Med. 132:211–250.PubMedCrossRefGoogle Scholar
  58. 56.
    Capra, J. D., and Kehoe, J. M., 1974, Variable region sequences of five immunoglobulin heavy chains of the VHIII subgroup: Definitive identification of four heavy chain hypervariable regions, Proc. Natl. Acad. Sci. USA 71:845–848.PubMedCrossRefGoogle Scholar
  59. 57.
    Capra, J. D., 1981, Antibody diversity: A somatic model, in: Immunoglobulin Idiotypes (C. A. Janeway Jr., E. E. Sercarz, and H. Wigzell, eds.), Academic Press, New York, pp. 825–830.Google Scholar
  60. 58.
    Alt, F. W., and Baltimore, D., 1982, Joining of immunoglobulin heavy chain gene segments: Implications from a chromosome with evidence of three D-JH fusions, Proc. Natl. Acad. Sci. USA 79:4118–4122.PubMedCrossRefGoogle Scholar
  61. 59.
    Kurosawa, Y., and Tonegawa, S., 1982, Organization, structure, and assembly of immunoglobulin heavy chain diversity DNA segments, J. Exp. Med. 155:201–218.PubMedCrossRefGoogle Scholar
  62. 60.
    Wood, C., and Tonegawa, S., 1983, Diversity and joining segments of mouse immunoglobulin heavy chain genes are closely linked and in the same orientation: Implications for the joining mechanism, Proc. Natl. Acad. Sci. USA 80:3030–3034.PubMedCrossRefGoogle Scholar
  63. 61.
    Tonegawa, S., 1983, Somatic generation of antibody diversity, Nature (London) 302:575–581.CrossRefGoogle Scholar
  64. 62.
    Barnard, O., and Gough, N. M., 1980, Nucleotide sequence of immunoglobulin heavy chain joining segments between translocated VH and constant region genes, Proc. Natl. Acad. Sci. USA 77:3630- 3634.CrossRefGoogle Scholar
  65. Sakano, H., Maki, R., Kurosawa, Y., Roeder, W., and Tonegawa, S., 1980, Two types of somatic recom-bination are necessary for the generation of complete immunoglobulin heavy-chain genes, Nature 286:676–683.PubMedCrossRefGoogle Scholar
  66. 63.
    Loh, D. Y., Bothwell, A. L. M., White-Scharf, M. E., Imanishi-Kari, T., and Baltimore, D., 1983, Molecular basis of a mouse strain-specific anti-hapten response, Cell 33:85–93.PubMedCrossRefGoogle Scholar
  67. 64.
    Estess, P., 1980, Structural and serologic analyses of monoclonal A/J anti-arsonate antibodies with and without a cross-reactive idiotype. Ph.D. thesis, The University of Texas Health Science Center, Dallas.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Clive A. Slaughter
    • 1
  • J. Donald Capra
    • 1
  1. 1.Department of MicrobiologyThe University of Texas Health Science CenterDallasUSA

Personalised recommendations