Advertisement

Murine Plasmacytoma MOPC315 as a Tool for the Analysis of Network Regulation

M315 Idiotopes Are Inducers and Targets of Immunoregulatory Signals
  • Richard G. Lynch
  • Gary L. Milburn

Abstract

A great deal of what is presently known about antibody molecules, their idiotypes, and their genes has come from studies of neoplastic antibody-producing cells. Typically, such studies have used an approach in which a myeloma cell provided the investigator with large quantities of a single, specific, readily purified macromolecule, e.g., an antibody, an RNA, or an immunoglobulin gene. This strategy has been successfully used to establish the primary, secondary, and tertiary structures of antibody molecules(1–3) to develop the molecular probes that specifically detect immunoglobulin genes and RNAs,(4) and to identify the chromosomal location(5) and the molecular organization and nucleotide sequences of immunoglobulin genes.(6,7)

Keywords

Light Chain Myeloma Cell Suppressor Cell Immunoglobulin Gene Idiotypic Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kabat, E. A., Wu, T. T., and Bilofsky, H., 1979, Sequences of Immunoglobulin Chains, National Institute of Health Publication 80–2008.Google Scholar
  2. 2.
    Edelman, G. M., Cunningham, B. A., Gall, W. E., Gottlieb, P. D., Rutishauser, U., and Waxdal, M. J., 1969, The covalent structure of an entire γG immunoglobulin molecule, Proc. Natl. Acad. Sci. USA 63:78–85.PubMedCrossRefGoogle Scholar
  3. 3.
    Amzel, L. M., and Poljak, R. J., 1979, Three-dimensional structure of immunoglobulins, Annu. Rev. Biochem. 48:961–967.PubMedCrossRefGoogle Scholar
  4. 4.
    Hozumi, N., and Tonegawa, S., 1976, Evidence for somatic rearrangement of immunoglobulin genes coding for variable and constant regions, Proc. Natl. Acad. Sci. USA 73:3628–3632.PubMedCrossRefGoogle Scholar
  5. 5.
    Erikson, J., Finan, J., Nowell, P. C., and Groce, G. M., 1982, Translocation of immunoglobulin VH genes in Burkitt lymphoma, Proc. Natl. Acad. Sci. USA 79:5611–5615.PubMedCrossRefGoogle Scholar
  6. 6.
    Tonegawa, S., Brock, C., Hozumi, N., Matthyssens, G., and Schuller, R., 1979, Dynamics of immunoglobulin genes, Immunol. Rev. 36:73–94.CrossRefGoogle Scholar
  7. 7.
    Leder, P., and Seidman, J. G., 1978, The arrangement and rearrangement of antibody genes, Nature 276:790–795.PubMedCrossRefGoogle Scholar
  8. 8.
    Köhler, G., and Milstein, C., 1975, Continuous cultures of fused cells secreting antibodies of predefined specifications, Nature 256:495–497.PubMedCrossRefGoogle Scholar
  9. 9.
    Kenneth, R. H., McKearn, T. J., and Bechtol, K. B. (eds.), 1980, Monoclonal Antibodies, Plenum Press, New York.Google Scholar
  10. 10.
    Potter, M., Pawlita, M., Mushinski, E., and Feldmann, R.J., 1981, Structure of idiotypes and idiotopes, in: Immunoglobulin Idiotypes (C. A. Janeway Jr., E. E. Sercarz, and H. Wigzell, eds.), Academic Press, New York, pp. 1–20.Google Scholar
  11. 11.
    Sakato, N., Semma, M., Eisen, H. N., and Azuma, T., 1982, A small hypervariable segment in the variable domain of an immunoglobulin light chain stimulates formation of anti-idiotypic suppressor T cells, Proc. Natl. Acad. Sci. USA 79:5396–5400.PubMedCrossRefGoogle Scholar
  12. 12.
    Schilling, J., Clevinger, B., Davie, J. M., and Hood, L., 1980, Amino acid sequence of homogeneous antibodies to dextran and DNA rearrangements in heavy chain V-region gene segments, Nature 285:35–40.CrossRefGoogle Scholar
  13. 13.
    Parslow, T. G., and Granner, D. K., 1982, Chromatin changes accompany immunoglobulin K gene activation: A potential control region within the gene, Nature 299:449–451.PubMedCrossRefGoogle Scholar
  14. 14.
    Lynch, R. G., Rohrer, J. W., Odermatt, B. O., Gebel, H. M., Autry, J. R., and Hoover, R. G., 1979, Immunoregulation of murine myeloma cell growth and differentiation: A monoclonal model of B cell differentiation, Immunol. Rev. 48:45–80.PubMedCrossRefGoogle Scholar
  15. 15.
    Milburn, G. L., and Lynch, R. G., 1982, Immunoregulation of murine myeloma in vitro, f. Exp. Med. 155:852–861.CrossRefGoogle Scholar
  16. 16.
    Parslow, T. G., Milburn, G. L., Lynch, R. G., and Granner, D. K., 1983, Suppressor T cell action inhibits the expression of an excluded immunoglobulin gene, Science 220:1389–1391.PubMedCrossRefGoogle Scholar
  17. 17.
    Milburn, G. L., Parslow, T. G., Goldenberg, C., Granner, D. K., and Lynch, R. G., 1984, Idiotype-specific T cell suppression of light chain mRNA expression in MOPC-315 cells is accompanied by a post-transcriptional inhibition of heavy chain expression, f. Cell. Mol. Immunol. 1:115–123.Google Scholar
  18. 18.
    Rohrer, J. W., Gershon, R. K., Lynch, R. G., and Kemp, J. D., 1984, The enhancement of B lymphocyte secretory differentiation by an Ly 1+, 2-; Qa-1+ helper T cell subset that sees both antigen and determinants on immunoglobulin, J. Cell. Mol. Immunol. 1:50–62.Google Scholar
  19. 19.
    Aldo-Benson, M., and Scheiderer, L., 1983, Long-term growth of lines of murine dinitrophenyl-specific B lymphocytes in vitro, J. Exp. Med. 157:342–347.PubMedCrossRefGoogle Scholar
  20. 20.
    Potter, M., 1977, Antigen-binding myeloma proteins of mice, Adv. Immunol. 25:141–211.PubMedCrossRefGoogle Scholar
  21. 21.
    Rohrer, J. W., and Lynch, R. G., 1978, Antigen-specific regulation of myeloma cell differentiation in vivo by carrier-specific T cell factors and macrophages, J. Immunol. 121:1066–1074.PubMedGoogle Scholar
  22. 22.
    Hoover, R. G., Gebel, H. M., Dieckgraefe, B. K., Hickman, S., Rebbe, N., Hirayama, N., Ovary, Z., and Lynch, R. G., 1981, Occurrence and potential significnce of increased numbers of T cells with Fc receptors in myeloma, Immunol. Rev. 56:115–139.PubMedCrossRefGoogle Scholar
  23. 23.
    Hoover, R. G., and Lynch, R. G., 1983, Isotype-specific suppression of IgA: Suppression of IgA responses in BALB/c mice by Tα cells, J. Immunol. 130:521–523.PubMedGoogle Scholar
  24. 24.
    Dugan, E. S., Bradshaw, R. A., Simms, E. S., and Eisen, H. N., 1973, Amino acid sequence of the light chain of a mouse myeloma protein (MOPC-315), Biochemistry 12:5400–5416.PubMedGoogle Scholar
  25. 25.
    Francis, S. H., Leslie, R. G. Q., Hood, L., and Eisen, H. N., 1974, Amino acid sequence of the variable region of the heavy (alpha) chain of a mouse myeloma protein with anti-hapten activity, Proc. Natl. Acad. Set. USA 71:1123–1127.CrossRefGoogle Scholar
  26. 26.
    Eisen, H. N., Simms, E. S., and Potter, M., 1968, Mouse myeloma proteins with anti-hapten antibody activity: The protein produced by plasma cell tumor MOPC-315, Biochemistry 7:4126–4134.PubMedCrossRefGoogle Scholar
  27. 27.
    Inbar, D., Hochman, J., and Givol, D., 1972, Localization of antibody-combining sites within the variable portions of heavy and light chains, Proc. Natl. Acad. Sci. USA 69:2659–2662.PubMedCrossRefGoogle Scholar
  28. 28.
    Meinke, G. C., McConakey, P. J., and Spiegelberg, H. L., 1974, Suppression of plasmacytoma growth in mice by immunization with myeloma protein, Fed. Proc. 33:792.Google Scholar
  29. 29.
    Sugai, S., Palmer, D. W., Talal, N., and Witz, I. P., 1974, Protective and cellular immune responses to idiotypic determinants on cells from a spontaneous lymphoma of NZB/NZWF1 mice, J. Exp. Med. 140:1547–1558.PubMedCrossRefGoogle Scholar
  30. 30.
    Eisen, H. N., Sakato, N., and Hall, S. J., 1975, Myeloma proteins as tumor-specific antigens, Transplant. Proc. 7:209–214.PubMedGoogle Scholar
  31. 31.
    Beatty, P. G., Kim, B. S., Rowley, D. A., and Coppleson, L. W., 1976, Antibody against the antigen receptor of a plasmacytoma prolongs survival of mice bearing the tumor, J. Immunol. 116:1391–1396.PubMedGoogle Scholar
  32. 32.
    Bosma, M. J., and Bosma, G. C., 1977, Prevention of IgG2A production as a result of allotype-specific interaction between T and B cells, J. Exp. Med. 145:743–748.PubMedCrossRefGoogle Scholar
  33. 33.
    Bankert, R. B., Mayers, G. L., and Pressman, D., 1978, Clearance and re-expression of a myeloma cell’s antigen-binding receptors induced by ligands known to be immunogenic or tolerogenic for normal B lymphocytes: A model to study membrane events associated with B cell tolerance, Eur. J. Immunol. 8:512–519.PubMedCrossRefGoogle Scholar
  34. 34.
    Kans, J., D’Ottavio, R., and Kôhler, H., 1981, Mechanism of neonatal idiotype suppression. III. Delayed maturation of plasmacytoma stem cells in neonatally suppressed hosts, J. Immunol. 127:509.PubMedGoogle Scholar
  35. 35.
    Fu, S. M., Chiorazzie, N., Kunkel, H. J., Halper, J. P., and Harris, S. R., 1978, Induction of in vitro differentiation and immunoglobulin synthesis of human B leukemic lymphocytes, J. Exp. Med. 148:1570–1578.PubMedCrossRefGoogle Scholar
  36. 36.
    Miller, R. A., Maloney, D. G., Warnke, R., and Levy, R., 1982, Treatment of p cell lymphoma with monoclonal antiidiotype antibody, N. Engl. J. Med. 306:517–522.PubMedCrossRefGoogle Scholar
  37. 37.
    Suemura, M., Ishizaka, A., Kobatake, S., Sugimura, K., Maeda, K., Nakanishi, K., Kishimoto, S., Yanamura, Y., and Kishimoto, T., 1983, Inhibition of IgE production in B hybridomas by IgE class-specific suppressor factor from T hybridomas, J. Immunol. 130:1056–1060.PubMedGoogle Scholar
  38. 38.
    Kresina, T. F., Baine, Y., and Nisonoff, A., 1983, Adoptive transfer of resistance to growth of an idiotypesecreting hybridoma by T cells from idiotypically suppressed mice, J. Immunol. 130:1478–1482.PubMedGoogle Scholar
  39. 39.
    Lynch, R. G., Graff, R., Sirisinha, S., Simms, E. S., and Eisen, H. N., 1972, Myeloma proteins as tumor specific transplantation antigens, Proc. Natl. Acad. Sci. USA 69:1540–1544.PubMedCrossRefGoogle Scholar
  40. 40.
    Daley, M. J., Bridges, S., and Lynch, R. G., 1978, MOPC-315 spleen colonization: A sensitive quantitative in vivo assay for idiotype-specific immune suppression of MOPC-315, J. Immunol. Methods 24:47–56.PubMedCrossRefGoogle Scholar
  41. 41.
    Jorgensen, T., Gaudernack, G., and Hannestad, K., 1980, Immunization with the light chain and the VL domain of the isologous myeloma protein 315 inhibits growth of mouse plasmacytoma MOPC-315, Scand. J. Immunol. 11:29–35.PubMedCrossRefGoogle Scholar
  42. 42.
    Daley, M. J., Gebel, H. M., and Lynch, R. G., 1978, Idiotype-specific transplantation resistance to MOPC-315: Abrogation by post-immunization thymectomy, J. Immunol. 120:1620–1624.PubMedGoogle Scholar
  43. 43.
    Frikke, M. J., Bridges, S. H., and Lynch, R. G., 1977, Myeloma-specific antibodies: Studies of their properties and relationship to tumor immunity, J. Immunol. 118:2206–2212.PubMedGoogle Scholar
  44. 44.
    Sirisinha, S., and Eisen, H. N., 1971, Autoimmune antibodies to the ligand binding sites of myeloma proteins, Proc. Natl. Acad. Sci. USA 68:3130–3135.PubMedCrossRefGoogle Scholar
  45. 45.
    Tungkanak, R., and Sirisinha, S., 1976, Immunogenicity of Fab fragment of protein-315 for BALB/c mice, J. Immunol. 117:1664–1667.PubMedGoogle Scholar
  46. 46.
    Jorgensen, T., and Hannestad, K., 1977, Specificity of T and B lymphocytes for myeloma protein 315, Eur. J. Immunol. 7:426–431.PubMedCrossRefGoogle Scholar
  47. 47.
    Odermatt, B. O., Perlmutter, R., and Lynch, R. G., 1978, Molecular heterogeneity and fine specificity of BALB/c antibodies elicited by isologous myeloma protein, Eur. J. Immunol. 8:858–865.PubMedCrossRefGoogle Scholar
  48. 48.
    Milburn, G. L. and Lynch, R. G., 1983, Anti-idiotypic regulation of IgA expression in myeloma cells, Molec. Immunol., 20:931–940.CrossRefGoogle Scholar
  49. 49.
    Rohrer, J. W., Odermatt, B. O., and Lynch, R. G., 1979, Immunoregulation of murine myeloma: Isologous immunization with M315 induces idiotype-specific T cells that suppress IgA secretion by MOPC-315 cells in vivo, J. Immunol. 122:2011–2019.PubMedGoogle Scholar
  50. 50.
    Rohrer, J. W., Vasa, K., and Lynch, R. G., 1977, Myeloma cell immunoglobulin expression during in vivo growth in diffusion chambers: Evidence for repetitive cycles of differentiation, J. Immunol. 119:861–866.PubMedGoogle Scholar
  51. 51.
    Lynch, R. G. and Milburn, G. L., 1983, Id315-specific T cells that suppress MOPC-315 IgA synthesis recognize a VH 315 idiotope, Fed. Proc. 42:688.Google Scholar
  52. 52.
    Bothwell, A., Paskind, M., Schwartz, R., Sonenshein, G., Gefter, M., and Baltimore, D., 1981, Dual expression of λ genes in the MOPC-315 plasmacytoma, Nature 290:65.PubMedCrossRefGoogle Scholar
  53. 53.
    Schwartz, R., Sonenshein, G., Bothwell, A. and Gefter, M., 1981, Multiple expression of Ig X-chain encoding RNA species in murine plasmacytoma cells, J. Immunol. 126:2104.PubMedGoogle Scholar
  54. 54.
    Hozumi, N., Wu, G., Murialdo, H., Baumal, R., Mosmann, T., Winberry, L., and Marks, A., 1982, Arrangement of X light chain genes in mutant clones of the MOPC-315 mouse myeloma cells, J. Immunol. 129:260–266.PubMedGoogle Scholar
  55. 55.
    Max, E., Maizel, J. and Leder, P., 1981, The nucleotide sequence of a 5.5-kilobase DNA segment containing K immunoglobulin J and C region genes, J. Biol. Chem. 256:5116–5120.Google Scholar
  56. 56.
    Seising, E., Miller, J., Wilson, R., and Storb, U., 1982, Evaluation of mouse immunoglobulin X genes, Proc. Natl. Acad. Sci. USA 79:4681–4685.CrossRefGoogle Scholar
  57. 57.
    Abbas, A., Burakoff, S., Gefter, M., and Green, M., 1980, T lymphocyte mediated suppression of myeloma function in vitro. III. Regulation of antibody production in hybrid myeloma cells by T lymphocytes, J. Exp. Med. 152:969–978.PubMedCrossRefGoogle Scholar
  58. 58.
    Jorgensen, T., and Hannestad, K., 1979, T helper lymphocytes recognize the Vl domain of the isologous mouse myeloma protein 315, Scand. J. Immunol. 10:317–323.PubMedCrossRefGoogle Scholar
  59. 59.
    Jorgensen, T., and Hannestad, K., 1981, H-2 linked genes control immune response to V-domains of myeloma protein 315, Nature 228:396–397.Google Scholar
  60. 60.
    Jorgensen, T., and Hannestad, K., 1982, Helper T cell recognition of the variable domains of a mouse myeloma protein (315), J. Exp. Med. 155:1587–1596.PubMedCrossRefGoogle Scholar
  61. 61.
    Helman, M., Shreier, I., and Givol, D., 1976, Preparation and subfractionation of isologous and heterologous anti-idiotypes, using Fv fragments, J. Immunol. 117:1933–1937.PubMedGoogle Scholar
  62. 62.
    Jerne, N. K., 1974, Towards a network theory of the immune system, Ann. Immunol. (Paris) 125C:373–389.Google Scholar
  63. 63.
    Solomon, A., and McLaughlin, C. L., 1969, Bence-Jones proteins and light chains of immunoglobulins, J. Biol. Chem. 244:3399–3404.Google Scholar
  64. 64.
    Oudin, J., and Cazenave, P.-A., 1971, Similar idiotype specificities in immunoglobulin fractions with different antibody functions or even without detectable antibody function, Proc. Natl. Acad. Sci. USA 68:2616–2620.PubMedCrossRefGoogle Scholar
  65. 65.
    Amor, M., Mariamé, B., Voegtlé, D., and Cazenave, P.-A., 1982, The idiotypic network: The murine MOPC-315 anti-DNP system, Ann. Immunol. (Paris) 133:255–262.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Richard G. Lynch
    • 1
  • Gary L. Milburn
    • 1
  1. 1.Department of PathologyUniversity of Iowa College of MedicineIowa CityUSA

Personalised recommendations