Antibody Diversity in the Response to Streptococcal Group A Carbohydrate

  • R. Jerrold Fulton
  • Moon H. Nahm
  • Neil S. Greenspan
  • Joseph M. Davie


In the past several years, a number of laboratories have used the murine antibody response to streptococcal group A carbohydrate (GAC) as a model system in which to study the development and regulation of humoral immunity. This system displays a number of features which are common to other antigen-antibody systems as well as unique features which make it particularly suitable to the study of antibody diversity. The scope of this chapter is to review the major characteristics of this antibody response and to discuss in more detail recent experiments from our laboratory which have exploited the anti-GAC response to ask questions concerning the rules which govern the pairing of heavy- and light-chain variable regions in the generation of antibody diversity. As with most other antibody systems which have been examined in detail, it has become increasingly apparent that the antibody response to GAC is assembled from a restricted set of heavy- and light-chain variable regions and constant regions. These observations have raised questions about the extent to which combinatorial diversity functions within the immune system and suggest the possibility that coordinated regulation results in the expression of VL, VH, and CH gene products in restricted sets, irrespective of the constraints imposed by an antigen-specific system.


Light Chain Antibody Response Immunoglobulin Heavy Chain Antibody Diversity Immunoglobulin Variable Region 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Coligan, G. E., Schnute, W. C., and Kindt, T. J., 1975, Immunochemical and chemical studies on streptococcal group specific carbohydrates,J.Immunol. 114:1654–1658.PubMedGoogle Scholar
  2. 2.
    Krause, R. M., 1970, The search for antibodies with molecular uniformity,Adv. Immunol. 12:1–56.PubMedCrossRefGoogle Scholar
  3. 3.
    Briles, D. E., and Davie, J. M., 1975, Clonal dominance. I. Restricted nature of the IgM antibody response to group A streptococcal carbohydrate in mice,J. Exp. Med. 141:1291–1307.PubMedCrossRefGoogle Scholar
  4. 4.
    Cramer, M., and Braun, D. G., 1974, Genetics of restricted antibodies to streptococcal group polysaccharides in mice. I. Strain differences of isoelectric focusing spectra of group A hyperimmune antisera,J. Exp. Med. 139:1513–1528.PubMedCrossRefGoogle Scholar
  5. 5.
    Perlmutter, R. M., Hansburg, D., Briles, D. E., Nicolotti, R. A., and Davie, J. M., 1978, Subclass restriction of murine anti-carbohydrate antibodies,J. Immunol. 121:566–572.PubMedGoogle Scholar
  6. 6.
    Slack, J., Der-Balian, G. P., Nahm, M., and Davie, J. M., 1980, The IgG plaque-forming cell response to thymus-independent type 1 and type 2 antigens in normal mice and mice expressing an X-linked immunodeficiency,J. Exp. Med. 151:853–862.PubMedCrossRefGoogle Scholar
  7. 7.
    Der-Balian, G. P., Slack, J., Clevinger, B., Bazin, H., and Davie, J. M., 1980, Subclass restriction of murine antibodies. III. Antigens that stimulate IgG3 in mice stimulate IgG2c in rats,J. Exp. Med. 152:209–218.PubMedCrossRefGoogle Scholar
  8. 8.
    Yount, W. J., Dorner, M. M., Kunkel, H. G., and Kabat, E. A., 1968, Studies on human antibodies. VI. Selective variations in subgroup composition and genetic markers,J. Exp. Med. 127:633–646.PubMedCrossRefGoogle Scholar
  9. 9.
    Nahm, M., Clevinger, B. L., and Davie, J. M., 1982, Monoclonal antibodies to streptococcal group A carbohydrate. I. A dominant idiotypic determinant is located on Vk,J. Immunol. 129:1513–1518.PubMedGoogle Scholar
  10. 10.
    Braun, D., Kindred, B., and Jacobson, E., 1972, Streptococcal group A carbohydrate antibodies in mice: Evidence for strain differences in magnitude and restriction of the response, and for thymus-dependence,Eur. J. Immunol. 2:138–143.PubMedCrossRefGoogle Scholar
  11. 11.
    Briles, D. E., Nahm, M., Marion, T., Perlmutter, R., and Davie, J. M., 1982, Streptococcal group A carbohydrate has properties of both a thymus-independent (TI-2) and a thymus-dependent antigen,J. Immunol. 128:2032–2035.PubMedGoogle Scholar
  12. 12.
    Fulton, R. J., Nahm, M., and Davie, J. M., 1983, Monoclonal antibodies to streptococcal group A carbohydrate. II. The Vk1 GAClight chain is preferentially associated with serum IgG3,J. Immunol. 131:1326–1331.PubMedGoogle Scholar
  13. 13.
    Eichmann, K., 1972, Idiotypic identity of antibodies to streptococcal carbohydrate in inbred mice,Eur. J. Immunol. 2:301–307.PubMedCrossRefGoogle Scholar
  14. 14.
    Eichmann, K, 1973, Idiotype expression and the inheritance of mouse antibody clones,J. Exp. Med. 137:603–621.PubMedCrossRefGoogle Scholar
  15. 15.
    Berek, C., Taylor, B. A., and Eichmann, K., 1976, Genetics of the idiotype of BALB/c myeloma S1 17: Multiple chromosomal loci for VH genes encoding specificity for group A streptococcal carbohydrate, J. Exp. Med. 144:1164–1174.PubMedCrossRefGoogle Scholar
  16. 16.
    Briles, D. E., and Krause, R. M., 1974, Mouse strain-specific idiotypy and interstrain idiotypic cross- reactions, J. Immunol. 113:522–530.PubMedGoogle Scholar
  17. 17.
    Perlmutter, R. M., Briles, D. E., and Davie, J. M., 1977, Complete sharing of light chain spectrotypes by murine IgM and IgG anti-streptococcal antibodies, J. Immunol. 118:2161–2166.PubMedGoogle Scholar
  18. 18.
    Perlmutter, R. M., Briles, D. E., Greve, J. M., and Davie, J. M., 1978, Light chain diversity of murine anti-streptococcal antibodies: IgCH-linked effects on L chain expression, J. Immunol. 121:149–158.PubMedGoogle Scholar
  19. 19.
    Briles, D. E., and Carroll, R. J., 1981, A simple method for estimating the probable numbers of different antibodies by examining the repeat frequencies of sequences or isoelectric focusing patterns, Mol. Immunol. 18:29–38.PubMedCrossRefGoogle Scholar
  20. 20.
    Gearhart, P. J., Johnson, N. D., Douglas, R., and Hood, L., 1981, IgG antibodies to phosphorylcholine exhibit more diversity than their IgM counterparts, Nature 291:29–34.PubMedCrossRefGoogle Scholar
  21. 21.
    Crews, S., Griffin, J., Huang, H., Calame, K., and Hood, L., 1981, A single VH gene segment encodes the immune response to phosphorylcholine: Somatic mutation is correlated with the class of the antibody, Cell 25:59–66.PubMedCrossRefGoogle Scholar
  22. 22.
    Slack, J. H., Shapiro, M., and Potter, M., 1979, Serum expression of a V K structure, VK-11, associated with inulin antibodies controlled by gene(s) linked to the mouse IgCH complex, J. Immunol. 122:230–239.PubMedGoogle Scholar
  23. 23.
    Krawinkel, U., Cramer, M., Berek, C., Hammerling, G., Black, S. J., Rajewsky, K., and Eichmann, K., 1976, On the structure of the T-cell receptor for antigen, Cold Spring Harbor Symp. Quant. Biol. 41:285–294.CrossRefGoogle Scholar
  24. 24.
    Basta, P., Kubagawa, H., Kearney, J. F., and Briles, D. E., 1983, Ten percent of normal B cells and plasma cells share a VH determinant(s) (J606-GAC) with a distinct subset of murine VHIII plasmacytomas, J. Immunol. 130:2423–2428.PubMedGoogle Scholar
  25. 25.
    Fathman, C. G., Pisetsky, D. S., and Sachs, D. H., 1977, Genetic control of the immune response to nuclease. V. Genetic linkage and strain distribution of anti-nuclease idiotypes, J. Exp. Med. 145:569–577.PubMedCrossRefGoogle Scholar
  26. 26.
    Fulton, R. J., and Davie J. M., 1984, Influence of the immunoglobulin heavy chain loci on the expression of the Vki GAClight chain, J. Immunol, (in press).Google Scholar
  27. 27.
    Gibson, D., 1976, Genetic polymorphism of mouse immunoglobulin light chains revealed by isoelectric focusing, J. Exp. Med. 144:298–303.PubMedCrossRefGoogle Scholar
  28. 28.
    Gottlieb, P. D., 1974, Genetic correlation of a mouse light chain variable region marker with a thymocyte surface antigen, J. Exp. Med. 140:1432–1437.PubMedCrossRefGoogle Scholar
  29. 29.
    Claflin, J. L., 1976, Genetic marker in the variable region of kappa chains of mouse anti-phosphorylcholine antibodies, Eur. J. Immunol. 6:666–668.PubMedCrossRefGoogle Scholar
  30. 30.
    Devey, M. E., and Voak, D., 1974, A critical study of the IgG subclasses of the Rh anti-D antibodies formed in pregnancy and in immunized volunteers, Immunology 27:1073–1079.PubMedGoogle Scholar
  31. 31.
    Robboy, S. J., Lewis, E. J., Schur, P. H., and Coleman, R. W., 1970, Circulating anticoagulants to factor VIII: Immunochemical studies and clinical response to factor VIII concentrates, Am. J. Med. 49:742–752.PubMedCrossRefGoogle Scholar
  32. 32.
    Vandvik, B., Natvig, J. B., and Norrby, E., 1977, IgG1 subclass restriction of oligoclonal measles virus- specific IgG antibodies in patients with subacute sclerosing panencephalitis and in a patient with multiple sclerosis, Scand. J. Immunol. 6:651–657.PubMedCrossRefGoogle Scholar
  33. 33.
    McKearn, J. P., Paslay, J. W., Slack, J., Baum, C., and Davie, J. M., 1982, B cell subsets and differential responses to mitogens, Immunol. Rev. 64:5–23.PubMedCrossRefGoogle Scholar
  34. 34.
    Scott, M. J., and Fleischman, J. B., 1982, Preferential idiotype-isotype associations in antibodies to dini- trophenyl antigens, J. Immunol. 128:2622–2628.PubMedGoogle Scholar
  35. 35.
    Chang, S. P., Brown, M., and Rittenberg, M. B., 1982, Immunologic memory to pbosphorylcholine. II. PC-KLH induces two antibody populations that dominate different isotypes, J. Immunol. 128:702–706.PubMedGoogle Scholar
  36. 36.
    Chang, S. P., Brown, M., and Rittenberg, M. B., 1982, Immunologic memory to phosphorylcholine. III. IgM includes a fine specificity population distinct from TEPC 15, J. Immunol. 129:1559–1562.PubMedGoogle Scholar
  37. 37.
    Maki, R., Kearney, J., Paige, C., and Tonegawa, S., 1980, Immunoglobulin gene rearrangement in immature B cells, Science 209:1366–1369.PubMedCrossRefGoogle Scholar
  38. 38.
    Perry, R. P., Kelly, D. E., Coleclough, C., and Kearney, J. F., 1981, Organization and expression of immunoglobulin genes in fetal liver hybridomas,Proc. Natl. Acad. Sci. USA 78:247–251.PubMedCrossRefGoogle Scholar
  39. 39.
    Kubagawa, H., Mayumi, M., Crist, W., and Cooper, M., 1983, Immunoglobulin heavy chain switching in pre-B leukemias, Nature 301:340–342.PubMedCrossRefGoogle Scholar
  40. 40.
    Kishimoto, T., and Ishizaka, K., 1973, Regulation of antibody response in vitro. V. Effect of carrier-specific helper cells on generation of hapten-specific memory cells of different immunoglobulin classes, J. Immunol. 111:1–9.PubMedGoogle Scholar
  41. 41.
    Rosenberg, Y. J., 1982, Isotype-specific T cell regulation of immunoglobulin expression, Immunol. Rev. 67:33–58.PubMedCrossRefGoogle Scholar
  42. 42.
    Nisonoff, A., Ju, S.-T., and Owen, F. L., 1977, Studies of structure and immunosuppression of a crossreactive idiotype in strain A mice, Immunol. Rev. 34:89–118.PubMedCrossRefGoogle Scholar
  43. 43.
    Krawinkel, V., Cramer, M., Melchers, I., Imanishi-Kari, T., and Rajewsky, K., 1978, Isolated hapten- binding receptors of sensitized lymphocytes. III. Evidence for idiotypic restriction of T-cell receptors, J. Exp. Med. 147:1341–1347.PubMedCrossRefGoogle Scholar
  44. Eichmann, K., 1978, Expression and function of idiotypes on lymphocytes,Adv. Immunol. 26:195–254.PubMedCrossRefGoogle Scholar
  45. 45.
    Brack, C., Hirama, M., Lenhard-Schuller, R., and Tonegawa, S., 1978, A complete immunoglobulin gene is created by somatic recombination, Cell 15:1–14.PubMedCrossRefGoogle Scholar
  46. 46.
    Early, P., Huang, H., Davis, M., Calame, K., and Hood, L., 1980, An immunoglobulin heavy chain variable region gene is generated from three segments of DNA: VH, D, and JH, Cell 19:981–992.PubMedCrossRefGoogle Scholar
  47. 47.
    Kurosawa, Y., and Tonegawa, S., 1982, Organization, structure, and assembly of immunoglobulin heavy chain diversity DNA segments, J. Exp. Med. 155:201–218.PubMedCrossRefGoogle Scholar
  48. 48.
    Ahmed, A., Scher, I., Sharrow, S. O., Smith, A. H., Paul, W. E., Sachs, D. H., and Sell, K. W., 1977, B lymphocyte heterogeneity: Development and characterization of an alloantiserum which distinguishes B lymphocyte differentiation alloantigens,J. Exp. Med. 145:101–110.PubMedCrossRefGoogle Scholar
  49. 49.
    Huber, B., Gershon, R. R., and Cantor, H., 1977, Identification of a B-cell surface structure involved in antigen-dependent triggering: Absence of this structure on B-cells from CBA/N mutant mice, J. Exp. Med. 145:10–24.PubMedCrossRefGoogle Scholar
  50. 50.
    Huber, B., 1979, Antigenic marker on a functional subpopulation of B-cells controlled by the I-A subregion of the H-2 complex, Proc. Natl. Acad. Sci. USA 76:3460–3463.PubMedCrossRefGoogle Scholar
  51. 51.
    Asano, Y., and Hodes, R. J., 1982, T cell regulation of B cell activation: T cells independently regulate the responses mediated by distinct B cell subpopulations, J. Exp. Med. 155:1267–1276.PubMedCrossRefGoogle Scholar
  52. 52.
    Singer, A., Asano, Y., Shigeta, M., Hathcock, K. S., Ahmed, A., Fathman, G. G., and Hodes, R. J., 1982, Distinct B cell subpopulations differ in their genetic requirements for activation by T helper cells, Immunol. Rev. 64:137–160.PubMedCrossRefGoogle Scholar
  53. 53.
    Perlmutter, R. M., Nahm, M., Stein, K. E., Slack, J., Zitron, I., Paul, W. E., and Davie, J. M., 1979, Immunoglobulin subclass-specific immunodeficiency in mice with an X-linked B-lymphocyte defect,J. Exp. Med. 149:993–998.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • R. Jerrold Fulton
    • 1
  • Moon H. Nahm
    • 1
  • Neil S. Greenspan
    • 1
  • Joseph M. Davie
    • 1
  1. 1.Departments of Microbiology and Immunology and of PathologyWashington University School of MedicineSt. LouisUSA

Personalised recommendations