The Murine Antibody Response to Phosphocholine

Idiotypes, Structures, and Binding Sites
  • J. Latham Claflin
  • Jacqueline Wolfe
  • Anne Maddalena
  • Susan Hudak


Idiotypic determinants on immunoglobulin molecules serve two very useful purposes—one to the scientist who studies them, the other to the animal that expresses them. For the researcher they provide an invaluable probe for studies of antibody variability, for mapping V H and V L genes, and for examining the evolution of immunoglobulin genes. In the animal they serve as targets through which idiotypically specific, regulatory cells or molecules modulate immune responses in a highly selected manner. The work in our laboratory has used idiotypy in the former sense, that is, as a tool to investigate the diversity of an antibody response and, because this particular response is preserved in mice, to study the evolution of immunoglobulin genes. In this chapter we will briefly review the events in our laboratory that led to a dissection of the antibody response to phosphocholine (PC), a process in which idiotypes play a crucial role. We will not attempt a review of the literature in the field since the PC system has attracted many talented investigators. Detailed descriptions of much of that work can be found in other chapters of this volume or in reviews.(1–3)


Somatic Mutation Immune Seron Myeloma Protein Antibody Diversity Clonal Nature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Potter, M., 1977, Antigen-binding myeloma proteins of mice, Adv. Immunol. 25:141–211.PubMedCrossRefGoogle Scholar
  2. 2.
    Rudikoff, S., 1983, Immunoglobulin structure-function correlates: Antigen binding and idiotypes, in: Contemporary Topics in Molecular Immunology, Volume 9 (F. P. Imman and T. J. Kindt, eds.), Plenum Press, New York, pp. 169–209.Google Scholar
  3. 3.
    Huang, H., Crews, S., and Hood, L., 1981, Diversification of antibody genes through DNA rearrangements, Adv. Exp. Med. Biol. 137:475–488.PubMedGoogle Scholar
  4. 4.
    Potter, M., and Lieberman, R., 1970, Common antigenic determinants in five of eight BALB/c IgA myeloma proteins that bind phosphorylcholine, J. Exp. Med. 132:737–751.PubMedCrossRefGoogle Scholar
  5. 5.
    Leon, M., and Young, N. M., 1971, Specificity of phosphorylcholine of six murine myeloma proteins reactive withPneumococcus C polysaccharide and /3-lipoprotein, Biochemistry 10:1424–1429.PubMedCrossRefGoogle Scholar
  6. 6.
    Cosenza, H., and Kohler, H., 1972, Specific inhibition of plaque formation to phosphorylcholine by antibody against antibody, Science 176:1027–1029.PubMedCrossRefGoogle Scholar
  7. 7.
    Sher, A., and Cohn, M., 1972, Inheritance of an idiotype associated with the immune response of inbred mice to phosphorylcholine, Eur. J. Immunol. 2:319–323.PubMedCrossRefGoogle Scholar
  8. 8.
    Potter, M., 1971, Antigen binding myeloma in mice, Ann. N.Y. Acad. Sci. 190:306–321.PubMedCrossRefGoogle Scholar
  9. 9.
    Briles, D. E., Nahm, M., Schroer, K., Davie, J., Baker, P., Kearney, J., and Barletta, R., 1981, Anti- phosphocholine antibodies found in normal mouse serum are protective against intravenous infection with type 3 Streptococcus pneumoniae, J. Exp. Med. 153:694–705.CrossRefGoogle Scholar
  10. 10.
    Briles, D. E., Claflin, J. L., Schroer, K., and Forman, C., 1981, Mouse IgG3 antibodies are highly protective against infection with Streptococcus pneumoniae, Nature 294:88–90.CrossRefGoogle Scholar
  11. 11.
    Köhler, G., and Milstein, C., 1976, Derivation of specific antibody-producing tissue culture and tumor lines by cell fusion, Eur. J. Immunol. 6:511–519.PubMedCrossRefGoogle Scholar
  12. 12.
    Segal, D. M., Padlan, E. A., Cohen, G. H., Rudikoff, S., Potter, M., and Davies, D. R., 1974, The three- dimensional structure of a phosphorylcholine binding mouse immunoglobulin Fab and the nature of the antigen binding site, Proc. Natl. Acad. Sci. USA 71:4298–4302.PubMedCrossRefGoogle Scholar
  13. 13.
    Crews, S., Griffin, J., Huang, H., Calame, K., and Hood, L., 1982, A single Vh gene segment encodes the immune response to phosphorylcholine: Somatic mutation is correlated with the class of the antibody, Cell 25:59–66.CrossRefGoogle Scholar
  14. 14.
    Seising, E., and Storb, U., 1981, Somatic mutation of immunoglobulin light chain variable region genes, Cell 25:47–58.CrossRefGoogle Scholar
  15. 15.
    Claflin, J. L., Lieberman, R., and Davie, J.M., 1974, Clonal nature of the immune response to phosphorylcholine. I. Specificity, class, and idiotype of phosphorylcholine-binding receptors on lymphoid cells, J. Exp. Med. 139:58–73.PubMedCrossRefGoogle Scholar
  16. 16.
    Davie, J. M., and Paul, W. E., 1972, Receptors on immunocompetent cells. V. Cellular correlates of the maturation of the immune response, J. Exp. Med. 135:660–674.PubMedCrossRefGoogle Scholar
  17. 17.
    Claflin, J. L., Lieberman, R., and Davie, J. M., 1974, Clonal nature of the immune response to phosphorylcholine. II. Idiotypic specificity and binding characteristics of antiphosphorylcholine antibodies,J. Immunol. 112:1747–1756.PubMedGoogle Scholar
  18. 18.
    Claflin, J. L., and Davie, J. M., 1974, Clonal nature of the immune response to phosphorylcholine. III. Species-specific binding characteristics of rodent antiphosphorylcholine antibodies, J. Immunol. 113:1678- 1683.PubMedGoogle Scholar
  19. 19.
    Claflin, J. L., and Davie, J. M., 1974, Clonal nature of the immune response to phosphorylcholine. IV. Idiotypic uniformity of binding site associated antigenic determinants among mouse antiphosphorylcholine antibodies,J. Exp. Med. 140:673–686.PubMedCrossRefGoogle Scholar
  20. 20.
    Claflin, J. L., and Davie, J. M., 1975, Specific isolation and characterization of antibody directed against the binding site antigenic determinants, J. Immunol. 114:70–75.PubMedGoogle Scholar
  21. 21.
    Claflin, J. L., and Rudikoff, S., 1977, Uniformity in a clonal repertoire: A case for a germ-line basis of antibody diversity, Cold Spring Harbor Symp. Quant. Biol. 41:725–734.PubMedCrossRefGoogle Scholar
  22. 22.
    Barstad, P., Rudikoff, S., Potter, M., Cohn, M., Königsberg, W., and Hood, L., 1974, Immunoglobulin structure: Amino terminal sequences of mouse myeloma proteins that bind phosphorylcholine, Science 183:962–964.PubMedCrossRefGoogle Scholar
  23. 23.
    Claflin, J. L., Rudikoff, S., Potter, M., and Davie, J. M., 1975, Structural, functional, and idiotypic characteristics of a phosphorylcholine-binding IgA myeloma protein of C57BL/Ka allotype, J. Exp. Med. 141:608–619.PubMedCrossRefGoogle Scholar
  24. 24.
    Claflin, J. L., 1976, Uniformity in the clonal repertoire for the immune response to phosphorylcholine in mice, Eur. J. Immunol. 6:669–674.PubMedCrossRefGoogle Scholar
  25. 25.
    Rudikoff, S., and Claflin, J. L., 1975, Expression of equivalent clonotypes in BALB/c and A/J mice after immunization with phosphorylcholine, J. Exp. Med. 144:1294–1304.CrossRefGoogle Scholar
  26. 26.
    Pawlak, L. L., and Nisonoff, A., 1973, Distribution of a cross-reactive idiotypic specificity in inbred strains of mice, J. Exp. Med. 137:855–869.PubMedCrossRefGoogle Scholar
  27. 27.
    Capra, J. D., Kehoe, J. M., Williams, R. C., Feizi, T., and Kunkel, H. G., 1972, Light chain sequences of human IgM cold agglutinins, Proc. Natl. Acad. Sci. USA 69:40–43.PubMedCrossRefGoogle Scholar
  28. 28.
    Kunkel, H. G., Winchester, R. J., Joslin, F. G., and Capra, J. D., 1974, Similarities in the light chains of anti-7-globulins showing cross-idiotypic specificities, J. Exp. Med. 139:128–137.PubMedCrossRefGoogle Scholar
  29. 29.
    Ju, S.-T., Benacerraf, B., and Dorf, M. E., 1978, Idiotypic analysis of antibodies to poly (Glu60Ala30Tyr10): Intrastrain and interspecies idiotypic cross-reactions, Proc. Natl. Acad. Sci. USA 75:6192–6196.PubMedCrossRefGoogle Scholar
  30. 30.
    Gearhart, P.J., Sigal, N. H., and Klinman, N. R., 1977, The monoclonal antiphosphorylcholine antibody response in several murine strains: Genetic implications of a diverse repertoire, J. Exp. Med. 145:876–891.PubMedCrossRefGoogle Scholar
  31. 31.
    Gearhart, P. J., Sigal, N. H., and Klinman, N. R., 1975, Heterogeneity of the BALB/c antiphosphorylcholine antibody response at the precursor cell level, J. Exp. Med. 141:56–71.PubMedCrossRefGoogle Scholar
  32. 32.
    Kreth, H. W., and Williamson, A. R., 1973, The extent of diversity of antihapten antibodies in inbred mice: Anti-NIP antibodies in CBA/H mice, Eur. J. Immunol. 3:141–147.CrossRefGoogle Scholar
  33. 33.
    Keck, K., Grossberg, A. L., and Pressman, D., 1973, Specific characterization of isoelectric focused immunoglobulins in polyacrylamide gel by reaction with 125I-labeled protein antigen or antibodies,Eur. J. Immunol. 3:99–102.PubMedCrossRefGoogle Scholar
  34. 34.
    Claflin, J. L., and Cubberley, M., 1978, Clonal nature of the immune response to phosphocholine. VI. Molecular uniformity of a single idiotype among BALB/c mice, J. Immunol. 121:1410–1415.PubMedGoogle Scholar
  35. 35.
    Williams, K., and Claflin, J. L., 1982, Clonotypes of antiphosphocholine antibodies induced with Proteus morganii (Potter). II. Heterogeneity, class and idiotypic analyses of the repertoires in BALB/c and A/He J mice, J. Immunol. 128:600–607.PubMedGoogle Scholar
  36. 36.
    Slack, J., Der-Balian, G. P., Nahm, M., and Davie, J. M., 1980, Subclass restriction of murine antibodies. II. The IgG plaque-forming cell response to thymus-independent type 1 and type 2 antigens in normal mice and mice expressing an X-linked immunodeficiency, J. Exp. Med. 151:853–862.PubMedCrossRefGoogle Scholar
  37. 37.
    Parkhouse, R. M. E., and Cooper, M. D., 1977, A model for the differentiation of B lymphocytes with implications for the biological role of IgD, Immunol. Rev. 37:105–126.PubMedCrossRefGoogle Scholar
  38. 38.
    Cotton, R. G. H., Secher, D. S., and Milstein, C., 1973, Somatic mutation and the origin of antibody diversity: Clonal variability of the immunoglobulin produced by MOPC21 cells in culture, Eur. J. Immunol. 3:135–140.CrossRefGoogle Scholar
  39. 39.
    Claflin, J. L., and Cubberley, M., 1980, Clonal nature of the immune response to phosphocholine. VII. Evidence throughout inbred mice for molecular similarities among antibodies bearing the T15 idiotypes, J. Immunol. 125:551–558.PubMedGoogle Scholar
  40. 40.
    Claflin, J. L., 1980, Clonal nature of the immune response to phosphocholine. VIII. Evidence that antibodies bearing T15 idiotypic determinants in Igh) mice comprise a family of antibodies, J. Immunol. 125:559–563.PubMedGoogle Scholar
  41. 41.
    Wolfe, J., and Claflin, J. L., 1980, Clonal nature of the immune response to phosphocholine. IX. Heterogeneity among antibodies bearing M511 idiotypic determinants, J. Immunol. 125:2397–2401.PubMedGoogle Scholar
  42. 42.
    Hansburg, D., Briles, D. E., and Davie, J. M., 1976, Analysis of the diversity of murine antibodies to dextran B1355.1. Generation of a large, pauci-clonal response by a bacterial vaccine, J. Immunol. 117:569–575.PubMedGoogle Scholar
  43. 43.
    Makela, D., Kaartinen, M., Pelkonen, J. L. T., and Karjalainen, K., 1978, Inheritance of antibody specificity. V. Anti-2-phenyloxazoline in the mouse, J. Exp. Med. 148:1644–1660.CrossRefGoogle Scholar
  44. 44.
    Weigert, M. G., Cesari, I. M., Yankovitch, S. J., and Cohn, M., 1970, Variability in the lambda light chain sequences of mouse antibody, Nature 228:1045–1047.PubMedCrossRefGoogle Scholar
  45. 45.
    Weigert, M., Gatmaitan, L., Loh, E., Schilling, J., and Hood, L., 1978, Rearrangement of genetic information may produce immunoglobulin diversity, Nature 276:785–790.PubMedCrossRefGoogle Scholar
  46. 46.
    Pease, L. R., and Claflin, J. L., 1981, Clonal regulation in the response to phosphocholine. II. Heterogeneity among T15 idiotype positive antibodies in inbred and wild mice, Eur. J. Immunol. 11:662–667.PubMedCrossRefGoogle Scholar
  47. 47.
    Brack, C., Hirama, M., Lenhard-Schuller, R., and Tonegawa, S., 1978, A complete immunoglobulin gene is created by somatic recombination, Cell 15:1–14.PubMedCrossRefGoogle Scholar
  48. 48.
    Early, P., Huang, H., Davis, M., Calame, K., and Hood, L., 1980, An immunoglobulin heavy chain variable region gene is generated from three segments of DNA: VH, D and JHamp;GT; Cell 19:981–992.PubMedCrossRefGoogle Scholar
  49. 49.
    Sakano, H., Maki, R., Kurosawa, Y., Roeder, W., and Tonegawa, S., 1980, Two types of somatic recombination are necessary for the generation of complete immunoglobulin heavy-chain genes, Nature 286:676–683.PubMedCrossRefGoogle Scholar
  50. 50.
    Schilling, J., Clevinger, B., Davie, J. M., and Hood, L., 1980, Amino acid sequence of homogeneous antibodies to dextran and DNA rearrangements in heavy chain V-region gene segments, Nature 283:35–40.PubMedCrossRefGoogle Scholar
  51. 51.
    Claflin, J. L., and Davie, J. M., 1975, Clonal nature of the immune response to phosphorylcholine. V. Cross-idiotypic specificity among heavy chains of murine anti-PC antibodies and PC-binding myeloma proteins, J. Exp. Med. 141:1073–1083.PubMedCrossRefGoogle Scholar
  52. 52.
    Claflin, J. L., Hudak, S., and Maddalena, A., 1981, Antiphosphocholine hybridoma antibodies. I. Direct evidence for three distinct families in the murine response, J. Exp. Med. 153:352–364.PubMedCrossRefGoogle Scholar
  53. 53.
    Andres, C. M., Maddalena, A., Hudak, S., Young, N. M., and Claflin, J. L., 1981, Antiphosphocholine hybridoma antibodies. II. Functional analysis of binding sites within three antibody families, J. Exp. Med. 154:1584–1598.PubMedCrossRefGoogle Scholar
  54. 54.
    Maddalena, A., 1983, The conservation of specificity in the T15 family of mouse antiphosphocholine antibodies, Ph.D. thesis, The University of Michigan.Google Scholar
  55. 55.
    Claflin, J. L., 1976, Genetic marker in the variable region of kappa chains of mouse antiphosphorylcholine antibodies, Eur. J. Immunol. 6:666–668.PubMedCrossRefGoogle Scholar
  56. 56.
    Maddalena, A., Hudak, S., and Claflin, J. L., 1984, Idiotypes of anti-PC antibodies: Structural correlates, Ann. Immunol. 135C:117–122.Google Scholar
  57. 57.
    Wolfe, J., 1983, Sources of immunoglobulin diversity among murine antiphosphocholine antibodies in the M511 idiotype family, Ph.D. thesis, The University of Michigan.Google Scholar
  58. 58.
    Gearhart, P. J., Johnson, N. D., Douglas, R., and Hood, L., 1981, IgG antibodies to phosphorylcholine exhibit more diversity than their IgM counterparts, Nature 291:29–34.PubMedCrossRefGoogle Scholar
  59. 59.
    Kocher, H. P., Berek, C., and Jaton, J.-C., 1981, The immune response of BALB/c mice to phosphorylcholine is restricted to a limited number of Vh- and VL-isotypes, Mol. Immunol. 18:1027–1033.PubMedCrossRefGoogle Scholar
  60. 60.
    Clarke, S. H., Claflin, J. L., Potter, M., and Rudikoff, S., 1982, Polymorphisms in antiphosphocholine antibodies reflecting evolution of immunoglobulin families, J. Exp. Med. 157:98–113.CrossRefGoogle Scholar
  61. 61.
    Rudikoff, S., Satow, Y., Padlan, E., Davies, D., and Potter, M., 1981, Kappa chain structure from a crystallized murine Fab’: Role of jointing segment in hapten binding, Mol. Immunol. 18:705–711.PubMedCrossRefGoogle Scholar
  62. 62.
    Clarke, S., Claflin, J. L., and Rudikoff, S., 1982, Polymorphisms in immunoglobulin heavy chains suggesting gene conversion,Proc. Natl. Acad. Sci. USA 79:3280–3284.PubMedCrossRefGoogle Scholar
  63. 63.
    Rodwell, J. D., Gearhart, P. J., and Karush, F., 1983, Restriction in IgM expression. IV. Affinity analysis of monoclonal antiphosphorylcholine antibodies, J.Immunol. 130:313–316.PubMedGoogle Scholar
  64. 64.
    Briles, D. E., Forman, C., Hudak, S., and Claflin, J. L., 1982, Anti-PC antibodies of the T15 idiotype are optimally protective against Streptococcus pneumoniae, J. Exp. Med. 156:1177–1185.PubMedCrossRefGoogle Scholar
  65. 65.
    Bothwell, A. L., Paskind, M., Reth, M., Imanishi-Kari, T., Rajewsky, R., and Baltimore, D., 1981, Heavy chain variable region contribution to the NPb family of antibodies: Somatic mutation evident in a 72a variable region, Cell 24:625–637.PubMedCrossRefGoogle Scholar
  66. 66.
    Siekewitz, M., Huang, S. Y., and Gefter, M. L., 1983, The genetic basis of antibody production: A single heavy chain variable region gene encodes all molecules bearing the dominant anti-arsonate idiotype in the strain A mouse, Eur. J. Immunol. 13:123–132.CrossRefGoogle Scholar
  67. 67.
    Newman, B., Sugii, S., Kabat, E. A., Torii, M., Clevinger, B. L., Schilling, J., Bond, M., Davie, J. M., and Hood, L., 1983, Combining site specificities of mouse hybridoma antibodies to dextran 1355S, J. Exp. Med. 157:130–140.PubMedCrossRefGoogle Scholar
  68. 68.
    Feldman, R. J., Potter, M., and Glaudemans, C. P. J., 1981, A hypothetical space-filling model of the V- region of the galactin-binding myeloma immunoglobulin J539, Mol. Immunol. 18:683–698.CrossRefGoogle Scholar
  69. 69.
    Wicker, L. S., Guelde, G., Scher, I., and Kenny, J. J., 1982, Antibodies from the Lyb5~ B cell subset predominate in the secondary IgG response to phosphocholine, J. Immunol. 129:950–953.PubMedGoogle Scholar
  70. 70.
    Siber, G. R., Schur, P. H., Aisenberg, A. C., Weitzman, S. A., and Schiffman, G., 1980, Correlation between serum IgG-2 concentrations and the antibody response to bacterial polysaccharide antigens, N. Engl. J. Med. 303:178–182.PubMedCrossRefGoogle Scholar
  71. 71.
    Morell, A., Skvaril, F., Hitzig, W. H., and Barandun, S., 1972, IgG subclasses: Development of the serum concentrations in normal infants and children, J. Pediatr. 80:960–964.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • J. Latham Claflin
    • 1
  • Jacqueline Wolfe
    • 1
  • Anne Maddalena
    • 1
  • Susan Hudak
    • 1
  1. 1.Department of Microbiology and ImmunologyThe University of Michigan Medical SchoolAnn ArborUSA

Personalised recommendations