Advertisement

Nonlinear Propagation Effects in Glass Fibers

  • R. H. Stolen
  • P. A. Fleury
  • H. Gibbs

Abstract

Nonlinearities in optical fibers constitute a rich and diverse field of interest for devices, for the limits imposed on fiber transmission, and for the study of nonlinear optics. The basic properties of fiber nonlinear optics are the exchange of fiber length for optical power, the application of simple plane-wave theory and the importance of group-velocity dispersion and fiber polarization. The primary effects are stimulated Raman and Brillouin scattering, Kerr effects, parametric four-photon mixing, and self-phase modulation. Self-phase modulation in combination with group-velocity dispersion leads to solitons and related effects.

Keywords

Optical Pulse Stimulate Raman Scattering Waveguide Mode Nonlinear Refractive Index Raman Gain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    For reviews of fiber nonlinear optics see: E. P. Ippen, “Nonlinear Effects in Optical Fibers,” in Laser Applications to Optics and Spectroscopy, S. F. Jacobs and M. O. Scully Eds. (Reading, Mass. Addison-Wesley, 1975) p. 213Google Scholar
  2. 1a.
    R. H. Stolen, “Nonlinear Properties of Optical Fibers,” in Optical Fiber Telecommunications, S. E. Miller and A. G. Chynoweth, Eds. New York: (Academic Press, 1979) p. 125CrossRefGoogle Scholar
  3. 1b.
    K. O. Hill, B. S. Kawasaki, D. C. Johnson, and Y. Fujii, “Nonlinear Effects in Optical Fibers,” in Fiber Optics-Advances in Research and Development, B. Bendow and S. S. Mitra, Eds. (New York: Plenum, 1979) p. 211CrossRefGoogle Scholar
  4. 1c.
    R. H. Stolen, “Fiber Raman Lasers,” in Fiber and Integrated Optics, D. B. Ostrowsky, Ed. (New York: Plenum, 1979) p. 157 and Fiber and Integ. Opt., 3, 21 (1980).CrossRefGoogle Scholar
  5. 2.
    R. H. Stolen and J. E. Bjorkholm, “Parametric Amplification and Frequency Conversion in Optical Fibers,” IEEE J. Quantum Electron. QE-18, 1062 (1982).ADSCrossRefGoogle Scholar
  6. 3.
    See for example: N. Bloembergen, “Nonlinear Optics,” New York: W. A. Benjamin, 1965Google Scholar
  7. 3a.
    R. W. Minck, R. W. Terhune, and C. C. Wang, “Nonlinear Optics,” Appl. Opt. 5, 1595 (1966)ADSCrossRefGoogle Scholar
  8. 3b.
    F. Shimizu, “Numerical Calculation of Self-Focusing and Trapping of a Short Light Pulse in Kerr Liquids,” IBM J. Res. Develop. 17, 286 (1973).CrossRefGoogle Scholar
  9. 4.
    D. Gloge, “Weakly Guiding Fibers,” Appl. Opt. 10, 2252, (1971).ADSCrossRefGoogle Scholar
  10. 5.
    H. Murata and N. Inagaki “Low-Loss Single-Mode Fiber Development and Splicing Research in Japan” IEEE J. Quantum Electron., QE-17, 835 (1981).ADSCrossRefGoogle Scholar
  11. 6.
    L. G. Cohen, P. Kaiser and Chinlon Lin “Experimental Techniques for Evaluation of Fiber Transmission Loss and Dispersion” Proc. IEEE, 68„ 1203 (1980).CrossRefGoogle Scholar
  12. 7.
    F. P. Kapron, N. F. Borelli, and D. B. Keck, “Birefringence in Dielectric Optical Waveguides,” IEEE J. Quantum Electron. QE-8, 222 (1972)ADSCrossRefGoogle Scholar
  13. 7a.
    A. Simon and R. Ulrich, “Evolution of Polarization along a Single-Mode Fiber,” Appl. Phys. Lett. 31, 517 (1977).ADSCrossRefGoogle Scholar
  14. 8.
    For reviews of polarization preserving fibers see: I. P. Kaminow, “Polarization in Optical Fibers” IEEE J. Quantum Electron. QE-17, 15 (1981)ADSCrossRefGoogle Scholar
  15. 8a.
    T. Okoshi, “Single-Polarization Single-Mode Optical Fibers” IEEE J. Quantum Electron.QE-17 879 (1981)ADSCrossRefGoogle Scholar
  16. 8b.
    D. N. Payne, A. J. Barlow and J. J. Ramskow-Hansen, “Development of Low- and High-Birefringence Optical Fibers,” IEEE J. Quantum Electron. QE-18, 477 (1982).ADSCrossRefGoogle Scholar
  17. 9.
    R. H. Stolen, V. Ramaswamy, P. Kaiser, and W. Pleibel, “Linear Polarization in Biréfringent Single-Mode Fibers,” App. Phys. Left. 33, 699 (1978).ADSCrossRefGoogle Scholar
  18. 10.
    R. E. Wagner, R. H. Stolen, and W. Pleibel, “Polarization Preservation in Multimode Fibers,” Electron. lett. 17, 177, (1981)CrossRefGoogle Scholar
  19. 10a.
    A. J. Snyder and W. R. Young, “Modes of Optical Waveguides,” J. Opt. Soc. Am., 68, 297 (1978).ADSCrossRefGoogle Scholar
  20. 11.
    R. H. Stolen, “Polarization Effects in Fiber Raman and Brillouin Lasers,” IEEE J. Quantum Electron. QE-15, 1157 (1979).ADSCrossRefGoogle Scholar
  21. 12.
    R. G. Smith, “Optical Power Handling Capacity of Low Loss Optical Fibers as Determined by Stimulated Raman and Brillouin Scattering,” Appl. Opt. 11, 2489 (1972).ADSCrossRefGoogle Scholar
  22. 13.
    Chinlon Lin, R. H. Stolen, and R. K. Jain, “Group Velocity Matching in Optical Fibers,” Opt. Lett. 1, 205 (1977)ADSCrossRefGoogle Scholar
  23. 13a.
    Y. Ohmori, Y. Sasaki, M. Kawachi, and T. Edahiro, “Single-Pass Raman Generation Pumped by a Mode-Locked Laser,” Electron Lett. 17, 594 (1981).ADSCrossRefGoogle Scholar
  24. 14.
    E. P. Ippen and R. H. Stolen, “Stimulated Brillouin Scattering in Optical Fibers,” Appl. Phys. Lett. 21, 539 (1972)ADSCrossRefGoogle Scholar
  25. 14a.
    N. Uesugi, M. Ikada and Y. Sasaki, “Maximum Single-Frequency Input Power in a Long Optical Fiber Determined by Stimulated Brillouin Scattering,” Electron. Lett. 17, 379 (1981).CrossRefGoogle Scholar
  26. 15.
    R. H. Stolen, “Nonlinearity in Fiber Transmission,” IEEE J. Quantum Electron. QE-68, 1232 (1980).Google Scholar
  27. 16.
    D. Milan and M. J. Weber, “Measurement of Nonlinear Refractive Index Coefficients Using Time-Resolved Interferometry”, J. Appl. Phys. 47, 2497 (1976).ADSCrossRefGoogle Scholar
  28. 17.
    P. L. Kelly “Self-Focusing of Optical Beams” Phys. Rev. Lett. 15, 1005 (1965).ADSCrossRefGoogle Scholar
  29. 18.
    S. Ezekiel, J. L. Davis, and R. Hellwarth, “Intensity Dependent Nonreciprocal Phase Shift in Fiber Gyros” in Proceedings of the International Conference on Fiberoptic Rotation Sensors and Related Technologies, (Springer-Verlag, New York, 1982)Google Scholar
  30. 18a.
    R. A. Bergh, H. C. LeFevre, and H. J. Shaw, “Compensation of the Optical Kerr Effect in Fiber-Optic Gyroscopes,” Opt. Lett. 7, 282 (1982).CrossRefGoogle Scholar
  31. 19.
    R. H. Stolen, J. Botineau, and A. Ashkin, “Intensity Discrimination of Optical Pulses With Birefringent Fibers,” Opt. Lett., 7, 512 (1982).ADSCrossRefGoogle Scholar
  32. 20.
    K. O. Hill, D. C. Johnson, B. S. Kawasaki, and R. I. McDonald, “CW Three-Wave Mixing in Single-Mode Optical Fibers,” J. Appl. Phys., 49, 5098 (1978).ADSCrossRefGoogle Scholar
  33. 21.
    K. Washio, K. Inoue, and T. Tanigawa, “Efficient Generation of Near IR Stimulated Light Scattering in Optical Fibers Pumped in Low-Dispersion Region at 1.3 µm, Electron.” Lett., 16, 331 (1980)ADSCrossRefGoogle Scholar
  34. 21a.
    Chinlon Lin, W. A. Reed, A. D. Pearson, Hen-Tai Shang, and P. F. Glodis, “Designing Single-Mode Fibers for Near-IR (1.1 – 1.7 pm) Frequency Generation by Phase-Matched Four-Photon Mixing in the Minimum Chromatic Dispersion Region,” Electron. Lett., 18, 87 (1982).CrossRefGoogle Scholar
  35. 22.
    R. H. Stolen, M. A. Bosch, and Chinlon Lin, “Phase Matching in Biréfringent Fibers,” Opt. Lett., 6, 213 (1981).ADSCrossRefGoogle Scholar
  36. 23.
    R. H. Stolen, J. E. Bjorkholm, and A. Ashkin, “Phase-Matched Three-Wave Mixing in Silica Fiber Optical Waveguides,” Appl. Phys. Lett., 24, 308 (1974)ADSCrossRefGoogle Scholar
  37. 23a.
    R. H. Stolen, “Phase-Matched-Stimulated Four-Photon Mixing in Silica-Fiber Waveguides,” IEEE J. Quantum Electron. QE-11, 100 (1975).ADSCrossRefGoogle Scholar
  38. 24.
    F. Shimizu “Frequency Broadening in Liquids by a Short Light Pulse,” Phys. Rev. Lett. 19, 1097 (1967).ADSCrossRefGoogle Scholar
  39. 25.
    R. H. Stolen and Chinlon Lin, “Self-Phase-Modulation in Silica Optical Fibers,” Phys. Rev. A. 17, 1448 (1978).ADSCrossRefGoogle Scholar
  40. 26.
    R. A. Fisher, P. L. Kelley and T. K. Gustafson, “Subpicosecond Pulse Generation Using the Optical Kerr Effect,” Appl. Phys. Lett., 14, 140 (1969).ADSCrossRefGoogle Scholar
  41. 27.
    A. Hasegawa and F. Tappert, “Transmission of Stationary Nonlinear Optical Pulses in Dispersive Dielectric Fibers, I. Anomalous Dispersion,” Appl. Phys. Lett. 23, 142 (1973).ADSCrossRefGoogle Scholar
  42. 28.
    L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental Observation of Picosecond Pulse Narrowing and Solitons in Optical Fibers,” Phys. Rev. Lett. 15, 1095 (1980).ADSCrossRefGoogle Scholar
  43. 29.
    H. Nakatsuka, D. Grischkowsky, and A. C. Balant, “Nonlinear Picosecond Pulse Propagation Through Optical Fibers with Positive Group Velocity Dispersion,” Phys. Rev. Lett., 47, 1910 (1981)ADSCrossRefGoogle Scholar
  44. 29a.
    D. Grischkowsky, and A. C. Balant, “Optical Pulse Compression Based on Enhanced Frequency Chirping,” Appl. Phys. Lett., 41, 1 (1982).ADSCrossRefGoogle Scholar
  45. 30.
    C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, and W. J. Tomlinson, “Compression of Femtosecond Optical Pulses,” Appl. Phys. Lett., 40, 761 (1982).ADSCrossRefGoogle Scholar
  46. 31.
    L. F. Mollenauer and R. H. Stolen “Solitons in Optical Fibers,” Laser Focus 18 (April, 1982).Google Scholar
  47. 32.
    Calculations from W. J. Tomlinson.Google Scholar
  48. 33.
    R. H. Stolen, L. F. Mollenauer, and W. T. Tomlinson, “Observation of Pulse Restoration at the Soliton Period in Optical Fibers,” Opt. Lett., 8, 186 (1983).ADSCrossRefGoogle Scholar
  49. 34.
    A. Hasegawa and Y. Kodama “Signal Transmission by Optical Soliton in Monomode Fiber,” Proc. IEEE 69, 1145(1981).ADSCrossRefGoogle Scholar
  50. 35.
    D. Anderson and M. Lisak, “Nonlinear Asymmetric Pulse Distortion in Long Optical Fibers,” Opt. Lett. 7, 394 (1982).ADSCrossRefGoogle Scholar
  51. 36.
    Y. Kodama and A. Hasegawa, “Amplification and Reshaping of Optical Solitons in Glass Fiber-II,” Opt. Lett. 7, 394 (1982).CrossRefGoogle Scholar
  52. 37.
    K. J. Blow and N. J. Doran, “High Bit Rate Communication Systems Using Non-Linear Effects,” (to be published).Google Scholar
  53. 1.
    G. Winterling, Phys. Rev. B12, 2432 (1975)ADSGoogle Scholar
  54. 2.
    K. B. Lyons, P. A. Fleury, R. H. Stolen and M. A. Bosch, Phys. Rev. B26, 7123 (1982)ADSGoogle Scholar
  55. 3.
    N. Theodorakopoulos and J. Jackle, Phys. Rev. B14, 2637 (1976)ADSGoogle Scholar
  56. 4.
    P. A. Fleury and K. B. Lyons, Phys. Rev. Lett. 36, 1188 (1976)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • R. H. Stolen
    • 1
  • P. A. Fleury
    • 2
  • H. Gibbs
  1. 1.Bell Telephone LaboratoriesHolmdelUSA
  2. 2.Bell LaboratoriesMurray HillUSA

Personalised recommendations