Measurement of Optical Dephasing by Spectral Holeburning in Rare Earth Doped Inorganic Glasses

  • R. M. Macfarlane
  • J. Hegarty
  • J. Ryan
  • R. M. Shelby


Spectral hole burning has been observed in rare earth doped silicate glasses, and used to measure homogeneous linewidths (Γh). For Eu3+, holes are burned by optical pumping of nuclear quadrupole levels, and our low temperature measurement of Γh shows that the previously determined T1.8 temperature dependence holds down to at least 1.6K. On the other hand, we find a linear temperature dependence for the 1D23H4 transition of Pr3+ glass from 1.6K–20K, a result which was confirmed by picosecond accumulated photon echoes. Finally, the 4G5/2 level of Nd3+ shows hole widths limited by fast (T1 = 55 psec) nonradiative relaxation. Current theories do not predict these results.


Silicate Glass Hole Burning Nonradiative Relaxation Linear Temperature Dependence Inorganic Glass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. J. Selzer, D. L. Huber, D. S. Hamilton, W. M. Yen and M. J. Weber, Phys. Rev. Lett. 36, 813 (1976).ADSCrossRefGoogle Scholar
  2. 2.
    P. Avouris, A. Campion and M. A. El-Sayed, J. Chem. Phys. 67, 3397 (11977).ADSCrossRefGoogle Scholar
  3. 3.
    J. Hegarty and W. M. Yen, Phys. Rev. Lett. 43, 1126 (1979).ADSCrossRefGoogle Scholar
  4. 4.
    J. M. Pellegrino, W. M. Yen and M. J. Weber, J. Appl. Phys. 51, 6332 (1980).ADSCrossRefGoogle Scholar
  5. 5.
    J. R. Morgan and M. A. El-Sayed, Chem. Phys. Lett. 84, 215 (1981).ADSCrossRefGoogle Scholar
  6. 6.
    J. M. Hayes, R. P. Stout and G. J. Small, J. Chem. Phys. 73, 4129 (1980).ADSCrossRefGoogle Scholar
  7. 6a.
    J. M. Hayes, R. P. Stout and G. J. Small, J. Chem. Phys. 74, 4266 (1981).ADSCrossRefGoogle Scholar
  8. 7.
    J. Friedrich and D. Haarer, App. Phys. B28, 262 (1982).ADSGoogle Scholar
  9. 8.
    T. L. Reinecke, Solid State Commun. 32, 1103 (1979).ADSCrossRefGoogle Scholar
  10. 9.
    S. K. Lyo and R. Orbach, Phys. Rev. B22, 4223 (1980).ADSGoogle Scholar
  11. 10.
    R. Reinecker and H. Morawitz, Chem. Phys. Lett. 86, 359, (1982).ADSCrossRefGoogle Scholar
  12. 11.
    S. K. Lyo, Phys. Rev. Lett. 48, 688 (1982).ADSCrossRefGoogle Scholar
  13. 12.
    D. L. Huber, J. Non. Cryst. Sol. 51, 241 (1982).ADSCrossRefGoogle Scholar
  14. 13.
    W. H. Hesselink and D. A. Wiersma, Phys. Rev. Lett. 43, 1991 (1978).ADSCrossRefGoogle Scholar
  15. 14.
    W. H. Hesselink and D. A. Wiersma, J. Chem. Phys. 75, 4192 (1981).ADSCrossRefGoogle Scholar
  16. 15.
    R. M. Shelby, Opt. Lett. 8, 88 (1983).ADSCrossRefGoogle Scholar
  17. 16.
    L. E. Erickson, Phys. Rev. B16, 4731 (1977).ADSGoogle Scholar
  18. 17.
    R. M. Macfarlane, R. M. Shelby A. Z. Genack and D. A. Weitz, Opt. Lett. 5, 462 (1980)ADSCrossRefGoogle Scholar
  19. 17a.
    R. M. Shelby and R. M. Macfarlane, Phys. Rev. Lett. 45, 1098 (1980).ADSCrossRefGoogle Scholar
  20. 18.
    C. B. Layne, W. H. Lowdermilk and M. J. Weber, Phys. Rev. B16, 10 (1977).ADSGoogle Scholar
  21. 19.
    M. J. Weber, Phys. Rev. B8, 54 (1973).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • R. M. Macfarlane
    • 1
  • J. Hegarty
  • J. Ryan
  • R. M. Shelby
    • 1
  1. 1.IBM Research LaboratorySan JoseUSA

Personalised recommendations