Advertisement

Experimental Studies of Optical Energy Transfer in Glasses

  • W. M. Yen
  • J. Ryan
  • J. Hegarty
  • A. C. Wright

Abstract

We review here experimental results obtained in the study of some rare earth (4f) activated insulating glasses using laser based site selective spectroscopic techniques such as fluorescence line narrowing (FLN). These studies have led to considerable progress in our understanding of the microscopic structure and the nature of certain excitations in the neighborhood of the probe ion. In addition, laser spectroscopy has allowed the investigation of intrinsic properties of optical transitions of ions at specific glass sites. Through these properties the relaxation behavior of individual ions has been determined and has become a problem of considerable current interest. We also present here a synopsis of studies of energy transfer in glasses. These processes arise because of inter-ionic interactions which lead to spatial and spectral diffusion of the energy. We again demonstrate that the advent of new experimental techniques has provided us with new information regarding these processes. We conclude by briefly discussing various prospects in this area of research.

Keywords

Silicate Glass Radiative Lifetime Energy Diffusion Homogeneous Width Lawrence Livermore Laboratory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A survey of conventional spectroscopic studies in glasses is to be found in J. Wong and C. A. Angelí, Glass Structure by Spectroscopy. (Dekker, New York, 1976).Google Scholar
  2. 2.
    P. M. Selzer in Laser Spectroscopy of Solids, Topics in Applied Physics, Vol. 49, W. M. Yen and P. M. Selzer, eds. (Springer Verlag, Berlin, 1981) Ch. 4.Google Scholar
  3. 3.
    G. H. Dieke, Spectra and Energy Levels of Rare Earth Ions in Crystals, (Wiley-Interscience, New York, 1968).Google Scholar
  4. 4.
    S. Hiifner, Optical Spectra of Transparent Rare Earth Compounds, (Academic Press, New York, 1978).Google Scholar
  5. 5.
    M. J. Weber, in Ref. 2, Ch. 6.Google Scholar
  6. 6.
    D. R. Uhlmann and A. G. Kolbeck, Phys. Chem. Glasses 17, 146 (1976).Google Scholar
  7. 7.
    J. M. Pellegrino, W. M. Yen and M. J. Weber, J. Appl. Phys. 51, 6332 (1980).ADSCrossRefGoogle Scholar
  8. 8.
    Yu V. Denisov and V. A. Kizel, Opt. Spectrosc. 23, 251 (1967).ADSGoogle Scholar
  9. 9.
    N. Motegi and S. Shionoya, J. Lumin. 8, 1 (1973).CrossRefGoogle Scholar
  10. 10.
    E. Snitzer and C. G. Young; Lasers, Vol. 2, A. K. Levine, ed. (Dekker, New York, 1966).Google Scholar
  11. 11.
    T. Kushida and E. Takushi, Phys. Rev. B12, 824 (1975).ADSGoogle Scholar
  12. 12.
    J. Hegarty, R. T. Brundage and W. M. Yen, Appl. Opt. 19, 1889 (1980).ADSCrossRefGoogle Scholar
  13. 13.
    M. J. Weber, J. A. Paisner, S. S. Sussman, W. M. Yen, L. A. Riseberg, C. Brecher, J. Lumin. 12/13, 729 (1976).CrossRefGoogle Scholar
  14. 14.
    Mono frequency laser induced FLN was demonstrated first in a Nd3+ glass. L. A. Riseberg, Phys. Rev. Lett. 28, 789 (1972).ADSCrossRefGoogle Scholar
  15. 15.
    S. S. Sussman, J. A. Paisner, W. M. Yen and M. J. Weber, Bull. Am. Phys. Soc. 20, 44 (1975).Google Scholar
  16. 16.
    C. Brecher and L. A. Riseberg, Phys. Rev. B21, 2607 (1980).ADSGoogle Scholar
  17. 17.
    B. G. Wybourne, Spectroscopic Properties of Rare Earths (Wiley-Interscience, New York, 1965).Google Scholar
  18. 18.
    J. A. Paisner, S. S. Sussman, W. M. Yen and M. J. Weber, Bull. Am. Phys. Soc. 20, 447 (1975).Google Scholar
  19. 19.
    P. M. Selzer, D. L. Huber, D. S. Hamilton, W. M. Yen and M. J. Weber: in Structure and Excitations in Amorphous Solids, AIP Conf. Proc. 31, 328 (1976).Google Scholar
  20. 20.
    P. Avouris, A. Campion and M. A. El-Sayed, J. Chem. Phys. 67, 3397 (1977).ADSCrossRefGoogle Scholar
  21. 21.
    S. A. Brawer and M. J. Weber, Phys. Rev. Lett. 45, 460 (1980).ADSCrossRefGoogle Scholar
  22. 22.
    D. W. Hall, S. A. Brawer and M. J. Weber, Phys. Rev. B25, 2828 (1981).ADSGoogle Scholar
  23. 23.
    J. Hegarty, W. M. Yen and M. J. Weber, Phys. Rev. B18, 5816 (1978).ADSGoogle Scholar
  24. 24.
    M. J. Weber, J. Hegarty and D. H. Blackburn, in Borate Glasses, L. D. Pye, V. D. Frechette and N. J. Kreidl, eds. (Plenum Press, New York 1978) p. 215.CrossRefGoogle Scholar
  25. 25.
    M. J. Weber, J. Non-Cryst. Sol. 47, 117 (1982); in Amorphous and Liquid Semiconductors, W. E. Spear, ed. (Univ. of Edinburgh, Edinburgh, 1978) p. 645.ADSCrossRefGoogle Scholar
  26. 26.
    R. G. Brewer, this volume.Google Scholar
  27. 27.
    R. M. Macfarlane and R. M. Shelby, unpublished. See also R. M. Macfarlane, this volume.Google Scholar
  28. 28.
    W. M. Yen, W. C. Scott and A. L. Schawlow, Phys. Rev. 136, A271 (1964).ADSCrossRefGoogle Scholar
  29. 29.
    P. M. Selzer, D. L. Huber, D. S. Hamilton, W. M. Yen and M. J. Weber, Phys. Rev. Lett. 36, 813 (1976).ADSCrossRefGoogle Scholar
  30. 30.
    J. Hegarty and W. M. Yen, Phys. Rev. Lett. 43, 1126 (1979).ADSCrossRefGoogle Scholar
  31. 31.
    D. L. Huber, this volume.Google Scholar
  32. 32.
    J. M. Pellegrino and W. M. Yen, Phys. Rev. B24, 6789 (1981).ADSGoogle Scholar
  33. 33.
    S. K. Lyo and R. Orbach, Phys. Rev. B22, 4223 (1980).ADSGoogle Scholar
  34. 34.
    J. R. Morgan, E. P. Chock, W. D. Hopewell, M. A. El-Sayed and R. Orbach, J. Phys. Chem. 85, 747 (1981).CrossRefGoogle Scholar
  35. 35.
    S. K. Lyo, Phys. Rev. Lett. 48, 688 (1982).ADSCrossRefGoogle Scholar
  36. 36.
    S. A. Brawer and M. J. Weber, App. Phys. Lett. 35, 31 (1979). See alsoADSCrossRefGoogle Scholar
  37. 36a.
    W. M. Yen and M. J. Weber, Optical linewidths in glass and their relation to hole burning, Lawrence Livermore Laboratory, Report ELR 79–107, (1979), unpublished.Google Scholar
  38. 37.
    See for example, J. C. Wright in Radiationless Processes in Molecules and Condensed Phases, F. K. Fong, ed. (Springer Verlag, Berlin, 1976) Ch. 4.Google Scholar
  39. 38.
    T. Holstein, S. K. Lyo and R. Orbach, in Ref. 2, Ch. 2.Google Scholar
  40. 39.
    D. L. Huber, in Ref. 2, Ch. 3.Google Scholar
  41. 40.
    W. M. Yen in Spectroscopy of Rare Earth Ions in Crystals, R. M. Macfarlane and A. A. Kaplyanskii, eds. (North Holland, Amsterdam, to be published).Google Scholar
  42. 41.
    See for example, R. Reisfeld, Structure and Bonding 30, 65 (1976).CrossRefGoogle Scholar
  43. 42.
    W. M. Yen, J. Lumin. 18/19, 639 (1979).CrossRefGoogle Scholar
  44. 43.
    W. M. Yen and P. M. Selzer, in Ref. 2, Ch. 5.Google Scholar
  45. 44.
    M. Harig, R. Chameau and H. Dubost, J. Lumin. 24/25, 643 (1981).CrossRefGoogle Scholar
  46. 45.
    W. M. Yen, J. A. Paisner, S. S. Sussman and M. J. Weber, Lawrence Livermore Laboratory, Rpt. UCRL-76481 (1975).Google Scholar
  47. 46.
    P. Avouris, A. Campion and M. A. El-Sayed, Chem. Phys. Lett. 50, 9 (1977).ADSCrossRefGoogle Scholar
  48. 47.
    R. T. Brundage, M. Shulavitch and W. M. Yen, to be published.Google Scholar
  49. 48.
    D. L. Huber, D. S. Hamilton and B. B. Barnett, Phys. Rev. B16, 4642 (1977).ADSGoogle Scholar
  50. 49.
    M. Inokuti and H. Hirayama, J. Chem. Phys. 43, 1978 (1965).ADSCrossRefGoogle Scholar
  51. 50.
    R. Flach, D. S. Hamilton, P. M. Selzer and W. M. Yen, Phys. Rev. Lett. 35, 1034 (1975).ADSCrossRefGoogle Scholar
  52. 51.
    D. L. Huber, Phys. Rev. B20, 2307 (1979).ADSGoogle Scholar
  53. 52.
    M. Yokota and I. Tamimoto, J. Phys. Soc. Jpn. 22, 779 (1967).ADSCrossRefGoogle Scholar
  54. 53.
    A. I. Burshtein, Zh. Eksp. Teo. Fiz. 62, 1695 (1972)Google Scholar
  55. 53a.
    A. I. Burshtein, Sov. Phys.-JETP 35, 882 (1972).ADSGoogle Scholar
  56. 54.
    J. Hegarty, D. L. Huber and W. M. Yen, Phys. Rev. B23, 6271 (1981);ADSGoogle Scholar
  57. 54a.
    J. Hegarty, D. L. Huber and W. M. Yen, Phys. Rev. B25, 5638 (1982).ADSGoogle Scholar
  58. 55.
    M. J. Weber, Phys. Rev. B4, 2932 (1971).ADSGoogle Scholar
  59. 56.
    A. R. Speed, G. F. J. Garlich and W. E. Hagston, Phys. stat. sol. (a)27, 477 (1975).ADSCrossRefGoogle Scholar
  60. 57.
    See for example: A. G. Avanesov, T. T. Basiev, Yu. K. Voron’ko, B. I. Denker, A. Ya. Karasik, G. V. Maksimova, V. V. Osiko, V. F. Pisarenko and A. M. Prokhorov, Zh. Eksp. Teo. Fiz. 77, 1771 (1979) [Sov. Phys. JEPT 50, 886 (1980)] and references therein.Google Scholar
  61. 1.
    A. C. Wright, G. Etherington, J. A. E. Desa, and R. N. Sinclair, J. de Physique (in press).Google Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • W. M. Yen
    • 1
  • J. Ryan
  • J. Hegarty
  • A. C. Wright
    • 2
  1. 1.Department of PhysicsUniversity of WisconsinMadisonUSA
  2. 2.Department of PhysicsUniversity of ReadingReadingEngland

Personalised recommendations