Advertisement

Theoretical Studies of Optical Energy Transfer in Glasses and Other Disordered Systems

  • D. L. Huber
  • J. Ryan
  • J. Hegarty
  • P. A. Fleury

Abstract

We discuss various theoretical problems arising in the analysis of the transfer of optical excitation in glasses and other disordered systems. Attention is focused on four areas: the temperature dependence of the homogeneous linewidth, the influence of structural and thermal disorder on the transfer process, calculations of the microscopic transfer rates, and the interpretation of time-dependent fluorescent spectra. In the discussion of the linewidth problem we assess the relative merits of the mechanisms which have been proposed to account for the anomalous temperature dependence observed in glasses. The competing effects of inhomogeneous broadening and ion-ion interactions in determining the eigenstates of multi-ion arrays are pointed out. We emphasize the role of thermal disorder in generating effective single-ion eigenstates by destroying the coherence between neighboring ions. The various types of phonon-assisted incoherent energy transfer processes are outlined. It is shown how the rate equation formalism provides a connection between the microscopic transfer processes and the decay of the fluorescence following pulsed excitation.

Keywords

Phonon Density Crystal Field Splitting Anomalous Temperature Dependence Inhomogeneous Line Thermal Disorder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. J. Weber, Laser Spectroscopy of Solids, Vol. 49 Topics in Applied Physics, W. M. Yen and P. M. Selzer, eds. (Springer-Verlag, Berlin, 1981) Ch. 6.Google Scholar
  2. 2.
    W. A. Phillips. J. Low Temp. Phys. 7, 351 (1972).ADSCrossRefGoogle Scholar
  3. 3.
    P. W. Anderson, B. I. Halperin, and C. M. Varma, Phil. Mag. 25, 1 (1972).ADSMATHCrossRefGoogle Scholar
  4. 4.
    P. M. Selzer, D. L. Huber, D. S. Hamilton, W. M. Yen, and M. J. Weber, Phys. Rev. Lett. 36, 813 (1976).ADSCrossRefGoogle Scholar
  5. 5.
    J. Hegarty and W. M. Yen, Phys. Rev. Lett. 43, 1126 (1979).ADSCrossRefGoogle Scholar
  6. 6.
    P. Avouris, A. Campion, and M. El-Sayed, J. Chem. Phys. 67, 3397 (1977).ADSCrossRefGoogle Scholar
  7. 7.
    J. M. Pellegrino, W. M. Yen and M. J. Weber, J. Appl. Phys. 51, 6332 (1980).ADSCrossRefGoogle Scholar
  8. 8.
    P. M. Selzer, D. L. Huber, D. S. Hamilton, W. M. Yen, and M. J. Weber, Structure and Excitation of Amorphous Solids, AIP Conf. Proc. 31, (American Inst, of Physics, New York, 1976) p. 328.Google Scholar
  9. 9.
    T. L. Reinecke, Solid State Comm. 32, 1103 (1979).ADSCrossRefGoogle Scholar
  10. 10.
    S. K. Lyo and R. Orbach, Phys. Rev. B 22, 4223 (1979).ADSCrossRefGoogle Scholar
  11. 11.
    I. S. Osadko, Pisma Zh. Eksp. Teor. Fiz. 33, 640 (1981)Google Scholar
  12. 11a.
    I. S. Osadko, JETP Lett. 33, 626 (1981)ADSGoogle Scholar
  13. 11b.
    I. S. Osadko and S. A. Zhdanov, Opt. Comm. 42, 185 (1982).ADSCrossRefGoogle Scholar
  14. 12.
    S. K. Lyo, Phys. Rev. Lett. 48, 688 (1982).ADSCrossRefGoogle Scholar
  15. 13.
    D. L. Huber, J. Non-Cryst. Solids 51, 241 (1982).ADSCrossRefGoogle Scholar
  16. 14.
    D. Heiman, R. W. Hellwarth, and D. S. Hamilton, J. Non-Cryst. Solids 34, 63 (1979).ADSCrossRefGoogle Scholar
  17. 15.
    J. Frenkel, Phys. Rev. 37, 17 (1931).ADSMATHCrossRefGoogle Scholar
  18. 16.
    N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials, Second Ed. (Clarendon Press, Oxford, 1979).Google Scholar
  19. 17.
    P. W. Anderson, Phys. Rev. 109, 1492 (1958).ADSCrossRefGoogle Scholar
  20. 18.
    B. Kramer, A. Mackinnon and D. Weaire, Phys. Rev. B 23, 6357 (1981).ADSCrossRefGoogle Scholar
  21. 19.
    W. Y. Ching and D. L. Huber, Phys. Rev. B 25, 1096 (1982).ADSCrossRefGoogle Scholar
  22. 20.
    P. V. Elyutin, Fiz. Tverd. Tela 22, 3533 (1980)Google Scholar
  23. 20a.
    P. V. Elyutin, Sov. Phys. Solid State 22, 2070 (1980).Google Scholar
  24. 21.
    D. L. Huber and W. Y. Ching, Phys. Rev. B 25, 6472 (1982).ADSCrossRefGoogle Scholar
  25. 22.
    T. Holstein, S. K. Lyo, and R. Orbach, Phys. Rev. Lett. 36, 891 (1976).ADSCrossRefGoogle Scholar
  26. 23.
    T. Holstein, S. K. Lyo, and R. Orbach, Phys. Rev. B 15, 1693 (1977).CrossRefGoogle Scholar
  27. 24.
    T. Holstein, S. K. Lyo, and R. Orbach, Ref. 1, Ch. 2.Google Scholar
  28. 25.
    D. L. Huber, J. Lumin. 27, 333 (1982).CrossRefGoogle Scholar
  29. 26.
    W. M. Yen and P. M. Selzer, Ref. 1, Ch. 5.Google Scholar
  30. 27.
    J. Hegarty, D. L. Huber, and W. M. Yen, Phys. Rev. B 23, 6271 (1981)ADSCrossRefGoogle Scholar
  31. 27a.
    J. Hegarty, D. L. Huber, and W. M. Yen, Phys. Rev. B 25, 5638 (1982).ADSCrossRefGoogle Scholar
  32. 28.
    D. L. Huber, Ref. 1, Ch. 3.Google Scholar
  33. 29.
    D. L. Huber, D. S. Hamilton, and B. Barnett, Phys. Rev. B 16, 4642 (1977).ADSCrossRefGoogle Scholar
  34. 30.
    W. Y. Ching, D. L. Huber, and B. Barnett, Phys. Rev. B 17, 5025 (1978).ADSCrossRefGoogle Scholar
  35. 31.
    D. L. Huber and W. Y. Ching, Phys. Rev. B 18, 5320 (1978).ADSCrossRefGoogle Scholar
  36. 32.
    D. L. Huber, Phys. Rev. B 20, 2307 (1979).ADSCrossRefGoogle Scholar
  37. 33.
    M. Inokuti and H. Hirayama, J. Chem. Phys. 43, 1978 (1965).ADSCrossRefGoogle Scholar
  38. 34.
    D. Fay, Phys. Rev. B 25, 4245 (1982).ADSCrossRefGoogle Scholar
  39. 35.
    M. Yokota and I. Tanimoto, J. Phys. Soc.(Japan) 22, 1779 (1967).Google Scholar
  40. 36.
    A. I. Burshtein, Zh. Eksp. Teor. Fiz. 62, 1695 (1972)Google Scholar
  41. 36a.
    A. I. Burshtein, Sov. Phys. JETP 35, 882 (1972).ADSGoogle Scholar
  42. 37.
    B. Movaghar and W. Schirmacher, J. Phys. C 14, 859 (1981).ADSCrossRefGoogle Scholar
  43. 38.
    D. L. Huber, J. Chem. Phys. 78, (1983).Google Scholar
  44. 1.
    R. Shuker and R. W. Gammon, Phys. Rev. Lett. 25, 222 (1970).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • D. L. Huber
    • 1
  • J. Ryan
  • J. Hegarty
  • P. A. Fleury
    • 2
  1. 1.Department of PhysicsUniversity of WisconsinMadisonUSA
  2. 2.Bell LaboratoriesMurray HillUSA

Personalised recommendations