Advertisement

Optically Detected Magnetic Resonance in Amorphous Semiconducting Glasses

  • B. C. Cavenett
  • S. P. Depinna
  • J. Orenstein
  • M. L. Theye

Abstract

Although it has been assumed for many years that photoluminescence in materials such as the chalcogenide glasses is due to a single recombination process, recent optically detected magnetic resonance (ODMR) studies have shown that both exciton and pair processes are involved. This paper will briefly outline the techniques and principles of ODMR as applied to both crystalline and amorphous materials, and illustrate the importance of the method by a consideration of recombination at triplet exciton states in glasses. Amorphous phosphorus has become the model material for these investigations, and the relationship between the ODMR, luminescence lifetime and time resolved results will be used as a basis for discussing parallel results in the chalcogenide glasses, where, in particular, new luminescence measurements of both the crystals and the related glasses can be compared with the ODMR results. The investigations establish the ODMR technique as an important method for analyzing the recombination processes in these and other amorphous semiconductors.

Keywords

Chalcogenide Glass Amorphous Semiconductor Exciton Emission Optically Detect Magnetic Resonance Triplet Exciton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. A. Street, Adv. Phys. 25, 347 (1976)ADSCrossRefGoogle Scholar
  2. 1a.
    R. A. Street, Adv. Phys. 30, 593 (1981).ADSCrossRefGoogle Scholar
  3. 2.
    N. F. Mott and E. A. Davis, “Electronic Processes in Non-Crystalline Materials,” Oxford, 2nd ed. (1979).Google Scholar
  4. 3.
    T. M. Searle, T. S. Nashashibi, I. G. Austin, R. Devonshire, and G. Lockwood, Phil. Mag. B, 39, 389 (1979).CrossRefGoogle Scholar
  5. 4.
    S. G. Bishop, U. Strom, and P. C. Taylor, Phys. Rev. B, 15, 2278 (1977).ADSCrossRefGoogle Scholar
  6. 5.
    B. C. Cavenett, Adv. Phys. 30, 475 (1981).ADSCrossRefGoogle Scholar
  7. 6.
    J. J. Davies, J. Phys. C, 11, 1907 (1978).ADSCrossRefGoogle Scholar
  8. 7.
    S. Depinna, B. C. Cavenett, T. M. Searle, and I. G. Austin, Solid State Commun., 43, 79 (1982a).ADSCrossRefGoogle Scholar
  9. 8.
    D. J. Dunstan and J. J. Davies, J. Phys. C, 12, 2927 (1979).ADSCrossRefGoogle Scholar
  10. 9.
    P. J. Dean, Prog. Sol. St. Chem., 8, 1 (1973), ed. J. O. McCaldin and G. Somorjai.CrossRefGoogle Scholar
  11. 10.
    P. D. Kirby and E. A. Davis, Proc. 14th Int. Conf. on the Physics of Semiconductors, ed. B. L. H. Wilson, p. 1309 (1978).Google Scholar
  12. 11.
    G. Fasol, thesis, University of Cambridge (1982).Google Scholar
  13. 12.
    G. Fasol and E. A. Davis, J. de. Physique, 25–26, Colloque C4–571 (1981).Google Scholar
  14. 13.
    G. Fasol, A. D. Yoffe and E. A. Davis, J. Phys. C, 15 5851 (1982).ADSCrossRefGoogle Scholar
  15. 14.
    S. Depinna and B. C. Cavenett, Solid State Comm., 40, 813 (1981)ADSCrossRefGoogle Scholar
  16. 14a.
    S. Depinna and B. C. Cavenett, Solid State Comm., 43, 25 (1982)ADSCrossRefGoogle Scholar
  17. 14b.
    S. Depinna and B. C. Cavenett, Phil. Mag. B, 46, 71 (1982)CrossRefGoogle Scholar
  18. 14c.
    S. Depinna and B. C. Cavenett, J. Phys. C, 15, L489 (1982)ADSCrossRefGoogle Scholar
  19. 14d.
    S. Depinna and B. C. Cavenett, Phys. Rev. Lett., 48 556 (1982).ADSCrossRefGoogle Scholar
  20. 15.
    B. V. Shanabrook, S. G. Bishop, and P. C. Taylor, J. de Physique 25–26, Colloque C4–865 (1981).Google Scholar
  21. 16.
    S. Depinna, thesis, University of Hull (1982).Google Scholar
  22. 17.
    D. J. Dunstan, S. Depinna, B. C. Cavenett, J. Phys. C, 14, L425 (1982).CrossRefGoogle Scholar
  23. 18.
    M. A. Kastner, D. Alder, and H. Fritszche, Phys. Rev. Lett., 37, 1504 (1976).ADSCrossRefGoogle Scholar
  24. 19.
    M. A. Kastner and H. Fritszche, Phil. Mag. B, 37, 199 (1978).CrossRefGoogle Scholar
  25. 20.
    K. Morigaki, P. Dawson, and B. C. Cavenett, Sol. St. Comm. 28, 829 (1978).ADSCrossRefGoogle Scholar
  26. 21.
    P. Dawson, K. Morigaki, and B. C. Cavenett, Proc. 14th Int. Conf. on the Physics of Semiconductors, ed. B. L. H. Wilson, p. 1023 (11979)Google Scholar
  27. 21a.
    P. Dawson, N. Killoran, and B. C. Cavenett, Solid State Commun. 32, 1163 (1979).CrossRefGoogle Scholar
  28. 22.
    G. S. Higashi and M. A. Kastner, 1982, private communication, (to be published).Google Scholar
  29. 23.
    S. Depinna, B. C. Cavenett, and W. E. Lamb, Phil. Mag. B, 47 99 (1983)CrossRefGoogle Scholar
  30. 23a.
    B. C. Cavenett, S. Depinna, and W. E. Lamb, Proc. Int. Conf. on the Physics of Semiconductors, Montepellier, (1982), to be published.Google Scholar
  31. 1.
    K. Morigaki, J. Phys. Soc. Japan 50, 2279 (1981).ADSCrossRefGoogle Scholar
  32. 2.
    D. K. Biegelsen, J. C. Knights, R. A. Street, C. Tsang, and R. M. White, Phil. Mag. B37, 477 (1978).CrossRefGoogle Scholar
  33. 3.
    S. P. Depinna, B. C. Cavenett, I. G. Austin, and T. M. Searle, Solid State Comm. 41, 263 (1982).ADSCrossRefGoogle Scholar
  34. 4.
    D. J. Dunstan and J. J. Davies, J. Phys. C, 12, 2927 (1979).ADSCrossRefGoogle Scholar
  35. 5.
    S. P. Depinna and B. C. Cavenett, J. Phys. C, 15, L489 (1982).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • B. C. Cavenett
    • 1
  • S. P. Depinna
    • 1
  • J. Orenstein
  • M. L. Theye
  1. 1.Department of PhysicsThe UniversityHullUK

Personalised recommendations