Evaluation of the Adleman Attack on Multiply Iterated Knapsack Cryptosystems

Abstract
  • E. F. Brickell
  • J. C. Lagarias
  • A. M. Odlyzko

Abstract

Early in 1982, A. Shamir [12] announced a polynomial time attack on the basic Merkle-Hellman knapsack cryptosystem. Since that time, attacks on various other knapsack cryptosystems have been proposed [1,2,4,6,7,11]. One of the most influential of the works in this area has been L. Adleman’s paper [1], which was the first to suggest the use of the Lenstra, Lenstra and Lovász (L3) lattice basis reduction algorithm [9] in attacks on knapsack cryptosystems. The L3 algorithm is now the most important tool used in such attacks.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. M. Adleman, On breaking the iterated Merkle-Hellman public-key system, pp. 303–308 in Advances in Cryptology: Proceedings of Crypto 82, D. Chaum, R. L. Rivest, and,A. T. Sherman, eds., Plenum Press, 1983.Google Scholar
  2. 2.
    L. M. Adleman, On breaking generalized knapsack public key cryptosystems, pp. 402–412 in Proc. 15th ACM Symp. on Theory of Computing (1983).Google Scholar
  3. 3.
    L. M. Adleman, E. F. Brickell, J. C. Lagarias and A. M. Odlyzko, Evaluation of attacks on Merkle-Hellman iterated knapsack cryptosystems, in preparation.Google Scholar
  4. 4.
    E. F. Brickell, Solving low density knapsacks, these proceedings.Google Scholar
  5. 5.
    E. F. Brickell and G. J. Simmons, A status report on knapsack based public key cryptosystems, Congressas Numerantium, Vol. 37 (1983), 3–72.Google Scholar
  6. 6.
    J. C. Lagarias, Knapsack public key cryptosystems and simultaneous diophantine approximation, these proceedings.Google Scholar
  7. 7.
    J. C. Lagarias and A. M. Odlyzko, Solving low-density subset sum problems, pp. 1–10 in Proc. 24th IEEE Symposium on Foundations of Computer Science (1983).Google Scholar
  8. 8.
    A. Lempel, Cryptology in transition: A Survey, Computing Surveys 11 (1979), 285–304.CrossRefGoogle Scholar
  9. 9.
    A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovâsz, Factoring polynomials with rational coefficients, Math. Annalen 261 (1982), 515–534.CrossRefGoogle Scholar
  10. 10.
    R. C. Merkle and M. E. Hellman, Hiding information and signatures in trap-door knapsacks, IEEE Trans. Information Theory IT-24 (1978), 525–530.Google Scholar
  11. 11.
    A. M. Odlyzko, Cryptanalytic attacks on the multiplicative knapsack cryptosystems and on Shamir’s fast signature scheme, preprint.Google Scholar
  12. 12.
    A. Shamir, A polynomial time algorithm for breaking the Merkle-Hellman cryptosystem, Proc. 23rd IEEE Symposium on Foundations of Computer Science (1982), 145–152.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • E. F. Brickell
    • 1
  • J. C. Lagarias
    • 2
  • A. M. Odlyzko
    • 2
  1. 1.Sandia National LaboratoriesAlbuquerqueUSA
  2. 2.AT&T Bell LaboratoriesMurray HillUSA

Personalised recommendations