Some Results on the Information Theoretic Analysis of Cryptosystems

  • H. Jürgensen
  • D. E. Matthews


Beginning with his 1948 paper [Sh 1] on the communication theory of secrecy systems, C.E. Shannon laid the foundations for a general, theoretical analysis of secrecy systems. That initial paper constitutes the first published formalization of the intuitive notion of a secrecy system — a cryptosystem as it will be called in the sequel. At the same time Shannon introduced the concept of an information theoretic analysis of cryptosystems in order to evaluate the theoretical security of those systems.


Chebyshev Inequality Secrecy System Unicity Distance Markov Source Cipher System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Bi 1]
    P. Billingsley: Statistical Methods in Markov chains. Ann. Math. Statist. 32 (1961), 12–40.CrossRefGoogle Scholar
  2. [B1 1]
    R. Blom: Information Theoretic Analysis of Ciphers. Linkoeping Stud. in Sci. and Technol., Dissertations, 41, 1979.Google Scholar
  3. [B1 2]
    R. Blom: On Pure Ciphers. Dep. Electr. Eng., Linkoeping Univ., Int. Rep. LiTH-ISY-I-0286, 1979.Google Scholar
  4. [B1 3]
    R. Blom: An Upper Bound on the Key Equivocation for Pure Ciphers. Dep. Electr. Eng., Linkoeping Univ., Int. Rep. LiTH-ISY-I-0287, 1979.Google Scholar
  5. [Bl 4]
    R. Blom: A Lower Bound on the Key Equivocation for the Simple Substitution Cipher Applied on a Binary Memoryless Source. Dep. Electr. Eng., Linkoeping Univ., Int. Rep. LiTH-ISY-I-0288, 1979.Google Scholar
  6. [Bl 5]
    R. Blom: Bounds on Key Equivocation for Simple Substitution Ciphers. IEEE Trans. Information Theory IT-25 (1979), 8–18.CrossRefGoogle Scholar
  7. [De 1]
    C.A. Deavours: Unicity Points in Cryptoanalysis. Cryptologia 1 (1977), 46–68.CrossRefGoogle Scholar
  8. [Ev 1]
    Sh. Even and O. Goldreich: DES-like functions can generate the alternating group. Computer Science Department, Technion, Haifa, Tech. Rep. 207, 1981.Google Scholar
  9. [Fi 1]
    E. Fischer: Language Redundancy and Cryptanalysis. Cryptologia 3 (1979), 233–235.CrossRefGoogle Scholar
  10. [Ge 1]
    Ph. R. Geffe: Secrecy Systems Approximating Perfect and Ideal Secrecy. Proc. IEEE 53 (1965), 1229–1230.CrossRefGoogle Scholar
  11. [Gu 1]
    S. Guiaysu: Information Theory and Applications. McGraw-Hill, New York, 1977.Google Scholar
  12. [He 1]
    M.E. Hellman: An Extension of the Shannon Theory Approach to Cryptography. IEEE Trans. Information Theory IT-23 (1977), 289–294.CrossRefGoogle Scholar
  13. [JU 1]
    H. Jürgensen: Language Redundancy and the Unicity Point. Cryptologia 7 (1983), 37–48.CrossRefGoogle Scholar
  14. [JU 2]
    H. Jürgensen and M. Kunze: Kryptocodes und Komplexität. (In preparation.)Google Scholar
  15. [JU 3]
    H. Jürgensen and M. Kunze: Redundanzfreie Codes als Kryptocodes. Bericht TI 8/80. Inst. f. Theoret. Informatik. TH Darmstadt, 1980. To appear in RAIRO.Google Scholar
  16. [Ko 1]
    A.G. Konheim: Cryptography: A Primer. John Wiley & Sons, New York, 1981.Google Scholar
  17. [Lu 1]
    Sh. Lu: The Existence of Good Cryptosystems for Key Rates Greater than the Message Redundancy. IEEE Trans. Information Theory IT-25 (1979), 475–477; IT 26 (1980), 129.Google Scholar
  18. [Me 1]
    C.H. Meyer and S.M. Matyas: Cryptography: A new dimension in computing data security. John Wiley & Sons, New York, 1982.Google Scholar
  19. [Re 1]
    I.S. Reed: Information Theory and Privacy in Data Banks. AFIPS Proc. 42 (1973), 581–587.Google Scholar
  20. [Re 2]
    J. Reeds: Entropy Calculations and Particular Methods of Cryptoanalysis. Cryptologia 1 (1977), 235–254.CrossRefGoogle Scholar
  21. [Sh 1]
    C.E. Shannon: Communication Theory of Secrecy Systems. Bell Syst. Tech. J. 28 (1948), 656–715.Google Scholar
  22. [Wh 1]
    P. Whittle: Some distribution and moment formulae for the Markov chain. J. Royal Stat. Soc., Ser. B., 17 (1955), 235–242.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • H. Jürgensen
    • 1
    • 2
  • D. E. Matthews
    • 1
    • 2
  1. 1.Department of Computer ScienceThe University of Western OntarioLondonCanada
  2. 2.Department of Statistics and Actuarial ScienceUniversity of WaterlooWaterlooCanada

Personalised recommendations