Advertisement

Analytical Characteristics of the DES

  • Marc Davio
  • Yvo Desmedt
  • Marc Fosséprez
  • René Govaerts
  • Jan Hulsbosch
  • Patrik Neutjens
  • Philippe Piret
  • Jean-Jacques Quisquater
  • Joos Vandewalle
  • Pascal Wouters

Abstract

The necessity to use cryptography in order to protect stored and transmitted data has been recognized in many commercial applications, such as electronic funds transfer (EFT), automated clearinghouses, etc ... (Diffie and Hellman, 1979).

Keywords

Expansion Phase Data Encryption Standard Cipher Block Chain Philips Research Laboratory Electronic Fund Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ANSI X3.92–1981, “Data Encryption Algorithm,”, American National Standards Institute, New York (December 31, 1980 ).Google Scholar
  2. Bernhard, R., “Breaching system security,” Spectrum, vol. 19, pp. 24–31 (1982).Google Scholar
  3. Clos, C., “A study of non-blocking switching networks,” BSTJ, vol. 32, pp. 406–424 (1953).Google Scholar
  4. Coppersmith, D. & Grossman, E., “Generators for certain alternating groups with applications to cryptography,” SIAM Journal on Applied Mathematics, vol. 29, pp. 624–627 (1975).CrossRefGoogle Scholar
  5. Davies, D. W. W., “Some regular properties of the Data Encryption Standard algorithm,” NPL note, presented at Crypto-81 (1981).Google Scholar
  6. Davies, D. W. & Parkin, G. I. P., “The average cycle size of the key stream in output feedback encipherment,” pp. 263–279, in Cryptography, Proc. Burg Feuerstein 1982, ed. T. Beth, Lecture Notes in Computer Science, Vol. 149, Springer-Verlag, Berlin (1983).Google Scholar
  7. Davio, M., “Ring-sum expansions of Boolean functions,” Symposium on computers and automata, pp. 411–418, Polytechnic Institute of Brooklyn (April 13–15, 1971).Google Scholar
  8. Davio, M., Deschamps, J.-P. & Thayse, A., Discrete and switching functions, McGraw-Hill, New York (1978).Google Scholar
  9. Deavours, C. A., “The view from across the pond: an interview with the Geneva management group,” Cryptologia, vol. 7, n° 2, pp. 187–190 (April 1983).Google Scholar
  10. Denning, D. E., Cryptography and data security, Addison Wesley, Reading (Mass. ) (1982).Google Scholar
  11. Diffie, W. & Hellman, M. E., “New directions in cryptography,” IEEE Trans. on Information Theory, vol. IT-22, pp. 644–654 (1976).Google Scholar
  12. Diffie, W. & Hellman, M. E., “Exhaustive cryptanalysis of the NBS Data Encryption Standard,” Computer, vol. 10, n° 6, pp. 74–84 (1977).CrossRefGoogle Scholar
  13. Diffie, W. & Hellman, M. E., “Privacy and authentication. An introduction to cryptography.,” IEEE Proceedings, vol. 67, n° 3, pp. 397–427 (1979).Google Scholar
  14. FIPS publication 46, “Data Encryption Standard,” Federal Information Processing Standard, National Bureau of Standards, U.S. Department of Commerce, Washington, D.C. (January 1977).Google Scholar
  15. FIPS publication 81, “DES modes of operation,” Federal Information Processing Standard, National Bureau of Standards, U.S. Department of Commerce, Washington, D.C. (1980).Google Scholar
  16. Fosséprez, M. & Wouters, P., “Cryptanalyse et matérialisation des réseaux de chiffrement,” Final work, Université Catholique de Louvain, Belgium (1983).Google Scholar
  17. Gait, J., “A new nonlinear pseudorandom number generator,” IEEE Trans. on Software Eng., vol. SE-3, n° 5, pp. 359–363 (1977).CrossRefGoogle Scholar
  18. Golomb, S. W., Shift register sequences, Holden Day, San Francisco (1967).Google Scholar
  19. Grossman, E., “Group theoretic remarks on cryptographic systems based on two types of addition,” IBM T. J. Wattson Res. Center RC 4742 (1974).Google Scholar
  20. Hellman, M. E., Merkle, R., Schroeppel, R., Washington, L., Diffie, W., Pohlig, S. & Schweitzer, P, P., “Results of an initial attempt to cryptanalyze the NBS data encryption standard,” SEL 76–042, Stanford University (1976).Google Scholar
  21. Hulsbosch, J., “Analyse van de zwakheden van het DES-algoritme door middel van formele codering,” Final work, Katholieke Universiteit Leuven, Belgium (1982).Google Scholar
  22. ISO/DP 8227 (Draft proposal), “Data encipherment, specification of algorithm DEAL,” (1983).Google Scholar
  23. Kharkevitch, A. D., “Multi-stage construction of switching systems (in Russian),” Doklady Akad. Nauk S.S.S.R., vol. 112, pp. 1043–1046 (1957).Google Scholar
  24. Konheim, A. G., Cryptography: A primer, J. Wiley, New York (1981).Google Scholar
  25. Meyer, C. H. & Tuchman, W. L., “Pseudorandom codes can be cracked,” Electronic Design, vol. 23, pp. 74–76 (1972).Google Scholar
  26. Meyer, C. H., “Design considerations for cryptography,” AFIPS Conf. Proc., vol. 42, pp. 603–606 (1973).Google Scholar
  27. Meyer, C. H. & Matyas, S. M., Cryptography: A new dimension in computer data security, J. Wiley, New York (1982).Google Scholar
  28. Morris, R., Sloane, N. J. A. & Wyner, A. D, “Assessment of the NBS proposed Data Encryption Standard,” Cryptologia, vol. 1, pp. 301–306 (1977).CrossRefGoogle Scholar
  29. Neutjens, P., “Diepere inzichten en eenvoudige hardware voor DES cryptografisch algoritme aan de hand van equivalente strukturen,” Final work, Katholieke Universiteit Leuven, Belgium (1983).Google Scholar
  30. Peterson, W. W., Error correcting codes, MIT Press, Cambridge, Mass. (1961).Google Scholar
  31. Rivest, R. L., Shamir, A. & Adleman, L., “A method for obtaining digital signatures and public-key cryptosystems,” Communications of the ACM, vol. 21, n° 2, pp. 120–126 (1978).CrossRefGoogle Scholar
  32. Ronse, C, C., “A multistage construction for substitution networks and its relation with the Data Encryption Standard and with feedback shift registers,” Philips Research Laboratory, Brussels, Research report R 444 (1980, Revised November 1982 ).Google Scholar
  33. Ronse, C., “Non linear shift registers: a survey,” Philips Research Laboratory, Brussels, Research report R 430 (1980).Google Scholar
  34. Schaumüller-Bichl, I., “Zur Analyse des Data Encryption Standard und Synthese verwandter Chiffriersystems,” Ph. D. Dissertation, Universität Linz, Austria (1981).Google Scholar
  35. Schaumüller-Bichl, I., “Cryptanalysis of the Data Encryption Standard by the method of formal coding,” pp. 235–255, in Cryptography, Proc. Burg Feuerstein 1982, ed. T. Beth, Lecture Notes in Computer Science, Vol. 149, Springer-Verlag, Berlin (1983).Google Scholar
  36. Shannon, C. E., “Communication theory of secrecy systems,” BST,, vol. 28, pp. 656–715 (1949).Google Scholar
  37. Vernarr, G. S., “Cipher printing telegraphy systems for secret wire and radio telegraphic communication,” JI AIEE, vol. 45, pp. 109–115 (1926).Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Marc Davio
    • 1
    • 3
  • Yvo Desmedt
    • 2
  • Marc Fosséprez
    • 3
  • René Govaerts
    • 2
  • Jan Hulsbosch
    • 2
  • Patrik Neutjens
    • 2
  • Philippe Piret
    • 1
  • Jean-Jacques Quisquater
    • 1
  • Joos Vandewalle
    • 2
  • Pascal Wouters
    • 3
  1. 1.Philips Research LaboratoryBrusselsBelgium
  2. 2.Laboratorium ESATKatholieke Universiteit LeuvenHeverleeBelgium
  3. 3.Université Catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations