Advertisement

Medical Uses of Accelerators

  • James N. Bradbury

Abstract

Particle accelerators, originally developed for research in Physics, are playing an increasingly important role worldwide in both routine medical applications and the testing of new medical techniques. Photon and electron beams produced by electron accelerators in the few hundred keV to 40 MeV range are in use at many medical centers for cancer radiotherapy. Accelerator-produced heavy particles including protons, neutrons, heavy ions, and negative pions are currently being evaluated for radiotherapy as a result of the improved dose localization and/or improved biological effect provided by these particles compared to conventional radiations.

Keywords

Dose Distribution Bragg Peak Heavy Charged Particle Neutron Energy Spectrum Projectile Fragmentation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. D. Suit, Magnitude of the Clinical Problem of Local Failutes, In: “Time and Dose Relationships in Radiation Biology as Applied to Radiotheraphy”, Brookhaven National Laboratory Report BNL-50503, pages 7–10 (1970).Google Scholar
  2. 2.
    H. R. Withers, Radiology 108: 131 (1973).Google Scholar
  3. 3.
    M. R. Raju, Heavy Particle Radiotherapy, Academic Press, New York (1980).Google Scholar
  4. 4.
    A. L. Smith, LEEE Trans. Nucl. Sci. NS-28: 1876 (1981).Google Scholar
  5. 5.
    J. F. Fowler, Nuclear Particles in Cancer Treatment, Adam Hilger Press, Bristol (1980).Google Scholar
  6. 6.
    A. M. Koehler, Med. Phys. 4: 297 (1977).CrossRefGoogle Scholar
  7. 7.
    H. D. Suit, M. Goitein, J. E. Tepper, L. Verhey, A. M. Koehler, J. Schneider and E. Gragondas, Int. J. Radiat. Oncol. Biol. Phys. 3: 115 (1977).CrossRefGoogle Scholar
  8. 8.
    R. L. Bach and R. S. Caswell, Radiat. Res. 35: 1 (1968).CrossRefGoogle Scholar
  9. 9.
    H. L. Amols, J. F. Diecello, M. Awschalom, L. Coulson, S. W. Johnsen and R. B. Theus, Med. Phys. 4: 486 (1977).CrossRefGoogle Scholar
  10. 10.
    International Committee on Radiation Units and Measurements. Neutron Dosimetry for Biology and Medicine, U. S. Nat. Bur. Stand. Rep. 26 (1977).Google Scholar
  11. 11.
    Lawerence Berkeley Laboratory LB-11220, “Biological and Medical Research with Accelerated Heavy Ions at the Bevalac”, M. C. Pirruccello and C. A. Tobias, eds. (1977–80).Google Scholar
  12. 12.
    M. Zaider, J. F. Dicello, D. J. Brenner, M. Takai, M. R. Raju and J. Howard, Radiat. Res. , in press.Google Scholar
  13. 13.
    P. H. Fowler and D. H. Perkins, Nature 189: 524 (1961).CrossRefGoogle Scholar
  14. 14.
    R. D. Brown and D. Grisham, LEEE Trans. Nucl. Sci. NS-28 (3): 2940 (1981).CrossRefGoogle Scholar
  15. 15.
    M. Paciotti, H. Amols, J. Bradbury, O. Rivera, K. Hogstrom, A. Smith H. Inoue, D. Laubacher and S. Sandford, LEEE Trans. Nucl. Sci. NS-26 (3): 3071 (1979).CrossRefGoogle Scholar
  16. 16.
    K. R. Hogstrom, M. A. Paciotti, A. R. Smith and M. Collier, Int. J. Radiat. Oncol. Biol. Phys. 6: 1693 (1980.CrossRefGoogle Scholar
  17. 17.
    E. Pedroni, Radiat. and Environ. Biophys. 16: 211 (1979).CrossRefGoogle Scholar
  18. 18.
    J. F. Dicello, M. Zaider and D. J. Brenner, “Advances in Radiation Protection and Dosimetry”, R. H. Thomas and V. Perez-Mendez, eds. pages 431–464 Plenum Publishing Co., New York (1980).Google Scholar
  19. 19.
    J. F. Dicello, ibid pages 465–478.Google Scholar
  20. 20.
    S. E. Bush, A. R. Smith, P. M. Stafford, R. N. Smith, R. Stark and A. Pannell, “Clinical Results of Pion Radiotherapy at LAMPT”, Proc. 2nd Int. Mtg. on Progress in Radio-Oncology, Vienna, Austria (1981).Google Scholar
  21. 21.
    L. Hansborough, R. Hamm, J. Stovall and D. Swenson, LEEE Trans. Nucl. Sci. NS-28: 1511 (1981).CrossRefGoogle Scholar
  22. 22.
    V. M. Abazov, JINR-Dubna Communication 8079: 13 (1974).Google Scholar
  23. 23.
    D. E. Lobb, Nucl. Inst. Meth. 160: 383 (1979).CrossRefGoogle Scholar
  24. 24.
    J. R. Stewart, J. A. Hicks, M. Boone and L. Simpson, Int. J. Radiat. Oncol. Biol. Phys. 4: 313 (1978).CrossRefGoogle Scholar
  25. 25.
    R. E. Zimmerman, Med. Instr. 13: 161 (1979).Google Scholar
  26. 26.
    E. F. Hoffman and M. E. Phelps, Med. Instr. 13: 147 (1979).Google Scholar
  27. 27.
    T. J. Ruth and A. P. Wolf, LEEE Trans. Nucl. Sci. NS-26: 1710 (1979) (1979).CrossRefGoogle Scholar
  28. 28.
    H. A. O’Brien and P. M. Grant, Private communication.Google Scholar
  29. 29.
    J. F. Lamb, LEEE Trans. Nucl. Sci. NS-28: 1916 (1981).CrossRefGoogle Scholar
  30. 30.
    W. Maenhaut and L. Dereu, LEEE Trans. Nucl. Sci. NS-28: 1386 (1981).CrossRefGoogle Scholar
  31. 31.
    J. Akselsson, LEEE Trans. Nucl. Sci. NS-28: 1370 (1981).Google Scholar
  32. 32.
    S. Johnsson, Nucl. Instr. Meth. 181 (1981).Google Scholar
  33. 33.
    R. L. Hutson, J. J. Reidy, K. Springer, H. Daniel and H. B. Knowles, Radiology 120: 193 (1976).Google Scholar
  34. 34.
    V. W. Steward and A. M. Koehler, Radiology 110: 217 (1974).Google Scholar
  35. 35.
    M. Capp, F. Sormer, L. Tobias and E. Benton, SPIE 152: 72 (1978).CrossRefGoogle Scholar
  36. 36.
    K. Hason, J. Bradbury, T. Cannon, R. Hutson, D. Laubacher, R. Macek, M. Paciotti and C. Taylor, Phys. Med. Biol. , in press.Google Scholar
  37. 37.
    K. Hason, J. Bradbury, R. Koeppe, R. Macek, D. Machen, R. Morgado, M. Paciotti, S. Sandford and V. Steward, Phys. Med. Biol. , in press.Google Scholar
  38. 38.
    J. Duchazeaubeneiz, J. Faivre, D. Garretta, B. Guillerminet, M. Rouger, J. Sandinos, P. Palmieri, C. Rayband, G. Solomon, G. Charpak, G. Melchart, Y. Perrin, J. Santiard and F. Sauli, CERN Rep. Ep/80–52 (1980).Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • James N. Bradbury
    • 1
  1. 1.Loss Alamos National LaboratoryLos AlamosUSA

Personalised recommendations