Advertisement

A Chromatographic Study of Hematoporphyrin Derivatives

  • Stein Sommer
  • Johan Moan
  • Terje Christensen
  • Jan F. Evensen

Abstract

Hematoporphyrin derivative (Hpd), a porphyrin mixture first introduced as a tumorlocalizer by Lipson et al. is the most widely used drug in clinical trials for photoradiation therapy (PRT) of cancer. Furthermore, due to its fluorescence and tumorlocalizing properties, it may be used in cancer diagnosis1–5. The components in Hpd have different tumorlocalizing and photosensitizing properties which should be characterized in order to select the component with the best properties for clinical use and for further investgations.

Keywords

High Pressure Liquid Chromatography Gradient Time Hematoporphyrin Derivative High Pressure Liquid Chromatography Analysis HAEMATOPORPHYRIN Derivative 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. L. Lipson, E. J. Baldes, and A. M. Olsen, The use of a derivative of hematoporphyrin in tumor detection. J. Natl. Cancer Inst. 26:1 (1961).Google Scholar
  2. 2.
    R. L. Lipson, E. J. Baldes, and M. J. Gray, Hematoporphyrin derivative of detection and management of cancer. Cancer 20:2255 (1967).CrossRefGoogle Scholar
  3. 3.
    G. A. Kyriazis, H. Bolin, and R. L. Lipson, Hematoporphyrin derivative-fluorescence test colposcopy and colphotography in the diagnosis of atypical mataplasia, dysplasia and carcinoma in situ of the cervix uteri. Am. J. Obstet Gynecol. 117:375 (1967).Google Scholar
  4. 4.
    A. E. Profio, and D. R. Doiron, A feasibility study of the use of fluorescence bronchoscopy for localization of small lung tumors. Phys. Med. Biol. 22:949 (1977).CrossRefGoogle Scholar
  5. 5.
    R. C. Benson, G. M. Farrow, J. H. Kinsey, D. A. Cortese, H. Zincke, and D. C. Utz, Detection and localization of in situ carcinoma of the bladder with hematoporphyrin derivative. Mayo Clin. Proc. 57:548 (1982).Google Scholar
  6. 6.
    R. W. Henderson, G. S. Christie, P. S. Clezy, and J. Lineham, Haematoporphyrin diacetate: A probe to distinguish malignant from normal tissue by selective fluorescence. Br. J. exp. path. 61:345 (1980).Google Scholar
  7. 7.
    M. C. Berenbaum, R. Bonnett, and P. A. Scourides, In vivo biological activity of the components of haematoporphyrin derivative. Br. J. Cancer 45:571 (1982).CrossRefGoogle Scholar
  8. 8.
    R. Bonnett and M. C. Berenbaum, HPD — A study of its components and their properties. In: Porphyrin Photosensitization”, D. Kessel and T. J. Dougherty, ed., Plenum Press, New York, London (1983).Google Scholar
  9. 9.
    J. Moan, S. Sandberg, T. Christensen, and S. Elander, Hematoporphyrin derivative: Chemical composition, photochemical and photosensitizing properties. In: “Porphyrin Photosensitization”, D. Kessel and T. J. Dougherty, ed., Plenum Press, New York, London (1983).Google Scholar
  10. 10.
    R. Bonnett, R. J. Ridge, P. A. Scourides, and M. C. Berenbaum, On the nature of haematoporphyrin derivative. J. Chem. Soc. Perkin I: 3135 (1981).CrossRefGoogle Scholar
  11. 11.
    M. Salmi, and R. Tehunen, New method for liquid-chromatographic measurement of erythrocyte protoporphyrin and coproporphyria Clin. Chem. 26:1832 (1980).Google Scholar
  12. 12.
    P. S. Clezy, T. T. Hai, R. W. Henderson, and L. Thuc, The chemistry of pyrrolic compounds. VLV* Haematoporphyrin derivative: Haematoporphyrin diacetate as the main product of the reaction of haematoporphyrin with a mixture of acetic and sulfuric acids. Aus. J. Chem. 33:585 (1980).CrossRefGoogle Scholar
  13. 13.
    P. A. Cadby, E. Dimitriades, H. G. Grant, and D. Ward, Separation and analysis of haematoporphyrin derivative components by high-performance liquid chromatography. J. Chromatography 231:273 (1982).CrossRefGoogle Scholar
  14. 14.
    D. Kessel and E. Rossi, Determinants of porphyrin-sensitized photooxidation characterized by fluorescence and absorption characterized by fluorescence and absorption spectra. Photochem. Photobiol. 35:37 (1982).CrossRefGoogle Scholar
  15. 15.
    T. J. Dougherty, D. G. Boyle, K. R. Weishaupt, B. A. Henderson, W. R. Potter, D. A. Bellnier, and K. E. Wityk, Photo-radiation therapy — Clinical and drug advances. In: “Porphyrin Photosensitization”, D. Kessel and T. J. Dougherty, ed., Plenum Press, New York, London (1983).Google Scholar
  16. 16.
    D. Kessel, Components of hematoporphyrin derivative and their tumor-localizing capacity. Cancer Res. 42:1703 (1982).Google Scholar
  17. 16a.
    J. Moan, J. F. Evensen, T. Christensen, A. Hindar, S. Sommer and J. B. McGhie, Chemical composition of hematoporphyrin derivative, tumorlocalizing and photsensitizing properties of its main components. Abstr. from the 10th ann. meeting of the American Society for Photobiology, Vancouver 1982 (pp. 173–174).Google Scholar
  18. 16b.
    P. J. Bugelski, C. W. Porter, and T. J. Dougherty, Autoradiographic distribution of hematoporphyrin derivative in normal and tumor tissue of the mouse. Cancer Res. 41:4608 (1981).Google Scholar
  19. 16c.
    J. Moan, T. Christensen, and S. Sommer, The main photosensitizing components of hematoporphyrin derivative. Cancer Lett. 15:161 (1982).CrossRefGoogle Scholar
  20. 16d.
    D. Dolphin (ed.) The porphyrins. Vol. 1 pp. 303–308, Acad. Press, New York, San Francisco, London (1978).Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Stein Sommer
    • 1
  • Johan Moan
    • 1
  • Terje Christensen
    • 1
  • Jan F. Evensen
    • 1
  1. 1.Norsk Hydro’s Institute for Cancer ResearchMontebello, Oslo 3Norway

Personalised recommendations