Advertisement

Chemical and Biological Studies on Haematoporphyrin Derivative: An Unexpected Photosensitisation in Brain

  • R. Bonnett
  • M. C. Berenbaum
  • H. Kaur

Abstract

The porphyrins are a group of heteroaromatic compounds possessing the parent skeleton shown in structure (1). Although it can be oxidised and reduced, this skeleton in general shows considerable stability. It is characterised by an absorption spectrum possessing a very strong band (the Soret band) at about 400 nm, and (generally) four further bands in the region 500 nm to 600 nm. The electronically excited state (S1) of the porphyrin system follows two pathways, radiative and (initially) nonradiative. The radiative pathway generates the ground state by energy emission (characteristically a red fluorescence, a very sensitive test for the porphyrin system in the absence of a coordinated transition metal ion), while intersystem crossing generates the triplet state, which is capable of sensitising the formation of singlet oxygen.

Keywords

Singlet Oxygen Photodynamic Action Ethyl Vinyl Cranial Nerve Nucleus Haematoporphyrin Derivative 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Hausmann, The sensitising action of haematoporphyrin, Biochem. Z. 30: 176 (1911)Google Scholar
  2. 2.
    F. Meyer-Betz, Investigations on the biological (photo-dynamic) action of haematoporphyrin and other derivatives of blood and bile pigments, Dtsch. Arch. Klin. Med. 112: 476 (1913).Google Scholar
  3. 3.
    R.L. Lipson and E.J. Baldes, The photodynamic properties of a particular haematoporphyrin derivative, Arch. Dermatol. 82: 508 (1960).CrossRefGoogle Scholar
  4. 4.
    R.L. Lipson, E.J. Baldes, and A.M. Olsen, The use of a derivative of haematoporphyrin in tumour detection, J. Natl. Cancer Inst. 26: 1 (1961).Google Scholar
  5. 5.
    I. Diamond, A.F. McDonagh, C.B. Wilson, S. L.Granelli, S. Nielsen and R. Jaenicke, Photodynamic therapy of malignant tumours, Lancet ii: 1175 (1972).CrossRefGoogle Scholar
  6. 6.
    J.F. Kelly, M.E. Snell, and M.C. Berenbaum, Photodynamic destruction of human bladder carcinoma, Br. J. Cancer, 31: 237 (1975).CrossRefGoogle Scholar
  7. 7.
    T.J. Dougherty, G.B. Grindey, R. Fiel, K.R. Weishaupt, and D.G. Boyle, Photoradiation therapy 2. Cure of animal tumours with haematoporphyrin and light, J. Natl. Cancer Inst. 55: 115 (1975).Google Scholar
  8. 8.
    R. Bonnett, R.J. Ridge, P.A. Scourides, and M.C. Berenbaum, On the nature of haematoporphyrin derivative, J. Chem. Soc., Perkin Trans. 1, 3139 (1981).Google Scholar
  9. 9.
    P.S. Clezy, T.T. Hai, R.W. Henderson, and L. van Thue, The chemistry of pyrrolic compounds 45. Haematoporphyrin derivative, Austral. J. Chem. 33: 585 (1980).CrossRefGoogle Scholar
  10. 10.
    M.C. Berenbaum, R. Bonnett, and P.A. Scourides, In vivo biological activity of the components of haematoporphyrin derivative, Br. J. Cancer, 45: 571 (1982).CrossRefGoogle Scholar
  11. 11.
    R. Bonnett, R.J. Ridge, P.A. Scourides, and M.C. Berenbaum, Haematoporphyrin derivative, J. Chem. Soc., Chem. Comm. 1198 (1980).Google Scholar
  12. 12.
    R. Bonnett and M.C. Berenbaum, HpD — A study of its components and their properties, Adv. Exp. Biol. Med. 160: 241 (1983).Google Scholar
  13. 13.
    R. Hayward, In vitro demonstration of the photodynamic effect on human brain tumours, Ann. Roy. Coll. Surg. 54: 272 (1974).Google Scholar
  14. 14.
    B.L. Wise and D.R. Toxdal, Studies of the blood-brain barrier utilising haematoporphyrin, Brain Research, 387 (1967).Google Scholar
  15. 15.
    I. Klatzo, Cerebral oedema and ischaemia, Recent Adv. Neuro-pathol. 1: 27 (1979).Google Scholar
  16. 16.
    C.J. Gomer, N. Rucker, C. Mark, W.F. Benedict, and A.L. Murphee, Tissue distribution of 3H-haematoporphyrin derivative in athymic nude mice heterotransplanted with human retinoblastoma, Invest. Ophthalm. Vis. Sci. 22: 118 (1982).Google Scholar
  17. 17.
    A. Weindl, Neuroendocrine aspects of circumventricular organs, in: “Frontiers in Neuroendocrinology”, W.F. Ganong and L. Martini, eds., p.3, Oxford Univ. Press, London (1973).Google Scholar
  18. 18.
    R.D. Broadwell and M.W. Brightman, Entry of peroxidase into nervous systems from extracerebral and cerebral blood, J. Compar. Neurol. 166: 257.Google Scholar
  19. 19.
    R. Bonnett, Oxygen activation and tetrapyrroles, Essays in Biochemistry 17: 1 (1981), and there p.39.Google Scholar
  20. 20.
    H. von Tappeiner, Action of fluorescent substances on red corpuscles, Biochem. Z. 13: 1 (1908).Google Scholar
  21. 21.
    W. Hausmann, The photodynamic action of plant extracts containing chlorophyll, Biochem. Z. 12: 331 (1907).Google Scholar
  22. 22.
    A.A. Lamola, T. Yamane, and A.M. Trozzole, Cholesterol hydroperoxide formation in red cell membranes and photohaemolysis in erythropoietic protoporphyria, Science, 179: 1131 (1973).CrossRefGoogle Scholar
  23. 23.
    A. de Paolis, S, Chandra, A,A. Charalambides, I.A. Magnus, and R, Bonnett, Photohaemolysis: the effect of porphyrin structure, to be published,Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • R. Bonnett
    • 1
  • M. C. Berenbaum
    • 2
  • H. Kaur
    • 1
  1. 1.Chemistry DepartmentQueen Mary CollegeLondonUK
  2. 2.Pathology DepartmentSt. Mary’s Hospital Medical SchoolLondonUK

Personalised recommendations