Advertisement

Mirrored and Mirrorless Optical Bistability: Exact C-Number Theory of Atoms Forming a Fabry-Perot Cavity

  • R. K. Bullough
  • S. S. Hassan
  • G. P. Hildred
  • R. R. Puri

Abstract

We report a fundamental theoretical study of the optical bistability (OB) of a set of 2-level atoms forming by their own geometry a Fabry-Perot cavity. Together with numerical work currently in hand the theory reported here should form a good basis for a detailed and quantitative comparison with experimental observations. Apparently suitable experiments are currently being performed1.

Keywords

Linear Refractive Index Cavity Action Local Field Correction Vary Envelope Approximation Extinction Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. J. Kimble, A. T. Rosenberger and P. D. Drummond, “Optical Bistability with Two-Level Atoms” in: “Coherence and Quantum Optics 5”, L. Mandel and E. Wolf, eds. Plenum Press, New York (1983).Google Scholar
  2. 2.
    R. K. Bullough, S. S. Hassan and S. P. Tewari, “Refractive Index Theory of Optical Bistability”, in: “Quantum Electronics and Electro-Optics,” pp. 229–232, P. L. Knight ed., John Wiley & Sons Ltd., London (1983).Google Scholar
  3. 3.
    R. K. Bullough and S. S. Hassan, “The optical extinction theorem in the non-linear theory of optical multistability”, Proc. SPIE 369:257–263 (1982).ADSGoogle Scholar
  4. 4.
    C. M. Bowden, F. A. Hopf and W. H. Louisell, “Mirrorless Intrinsic Optical Bistability due to the Local Field Correction in the Maxwell-Bloch Formulation”, Paper THA5 in these Proceedings.Google Scholar
  5. 5.
    L. Rosenfeld, “Theory of Electrons”, Dover Publications Inc., New York (1965).Google Scholar
  6. 6.
    R. K. Bullough, Phil. Trans. Roy. Soc. A 254:397 (1962);MathSciNetADSMATHCrossRefGoogle Scholar
  7. 6a.
    R. K. Bullough, J. Phys. A 1:409 (1968);ADSCrossRefGoogle Scholar
  8. 6b.
    R. K. Bullough, J. Phys. 2:477 (1969);ADSGoogle Scholar
  9. 6c.
    R. K. Bullough, J. Phys. 3:708, 726, 751 (1970).ADSGoogle Scholar
  10. 7.
    For example R. K. Bullough, R. Saunders and C. Feuillade, “Theory of Far Infra Red Superfluorescence”, in: “Coherence and Quantum Optics IV,” L. Mandel and E. Wolf, eds., Plenum Press, New York (1978) and the references there.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • R. K. Bullough
    • 1
  • S. S. Hassan
    • 2
  • G. P. Hildred
    • 1
  • R. R. Puri
    • 1
  1. 1.Department of MathematicsUMISTManchesterUK
  2. 2.Ain Shams UniversityCairoEgypt

Personalised recommendations